Solveeit Logo

Question

Question: Let the sum of n terms of an A.P be denoted by \({{S}_{n}}\). If \({{S}_{4}}=16\) and \({{S}_{6}}=-4...

Let the sum of n terms of an A.P be denoted by Sn{{S}_{n}}. If S4=16{{S}_{4}}=16 and S6=48{{S}_{6}}=-48, then S10{{S}_{10}} is equal to?
(A) -320
(B) -260
(C) -380
(D) -410

Explanation

Solution

We start solving this problem by first using the formula for the sum of n terms of an A.P and find Sn{{S}_{n}} in terms of first term and common difference. Then we substitute the values n=4n=4 and n=6n=6 in Sn{{S}_{n}}. Then we get two equations and we solve them to find the values of the first term and the common difference of A.P. Then let us substitute the value n=10n=10 in Sn{{S}_{n}}, and use the values of first term and the common difference to find the value of S10{{S}_{10}}.

Complete step-by-step answer :
We are given that the sum of n terms of an A.P is denoted by Sn{{S}_{n}}.
Let the first term of the given A.P be aa and the common difference of given A.P be dd. Then using the formula for sum of n terms of A.P, we get
Sn=n2(2a+(n1)d){{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right).
We are also given that S4=16{{S}_{4}}=16 and S6=48{{S}_{6}}=-48.
So, now let us substitute n=4n=4 in Sn{{S}_{n}}.
S4=42(2a+(41)d) 16=2(2a+3d) 2a+3d=8 \begin{aligned} & \Rightarrow {{S}_{4}}=\dfrac{4}{2}\left( 2a+\left( 4-1 \right)d \right) \\\ & \Rightarrow 16=2\left( 2a+3d \right) \\\ & \Rightarrow 2a+3d=8 \\\ \end{aligned}
So, now let us substitute n=6n=6 in Sn{{S}_{n}}.
S6=62(2a+(61)d) 48=3(2a+5d) 2a+5d=16 \begin{aligned} & \Rightarrow {{S}_{6}}=\dfrac{6}{2}\left( 2a+\left( 6-1 \right)d \right) \\\ & \Rightarrow -48=3\left( 2a+5d \right) \\\ & \Rightarrow 2a+5d=-16 \\\ \end{aligned}
So, now we have two equations with two variables.
2a+3d=8...........(1) 2a+5d=16...........(2) \begin{aligned} & \Rightarrow 2a+3d=8...........\left( 1 \right) \\\ & \Rightarrow 2a+5d=-16...........\left( 2 \right) \\\ \end{aligned}
Now, let us subtract equation (2) from equation (1). Then we get
(2a+5d)(2a+3d)=168 2d=24 d=12 \begin{aligned} & \Rightarrow \left( 2a+5d \right)-\left( 2a+3d \right)=-16-8 \\\ & \Rightarrow 2d=-24 \\\ & \Rightarrow d=-12 \\\ \end{aligned}
Now let us substitute the obtained value of dd in equation (1).
2a+3(12)=8 2a36=8 2a=36+8 2a=44 a=22 \begin{aligned} & \Rightarrow 2a+3\left( -12 \right)=8 \\\ & \Rightarrow 2a-36=8 \\\ & \Rightarrow 2a=36+8 \\\ & \Rightarrow 2a=44 \\\ & \Rightarrow a=22 \\\ \end{aligned}
So, we finally get the values as a=22a=22 and d=12d=-12.
As we need to find the value of S10{{S}_{10}}, let us substitute n=10n=10 in the formula of Sn{{S}_{n}}. Then we get,
S10=102(2a+(101)d) S10=5(2(22)+9(12)) S10=5(44108) S10=5(64) S10=320 \begin{aligned} & \Rightarrow {{S}_{10}}=\dfrac{10}{2}\left( 2a+\left( 10-1 \right)d \right) \\\ & \Rightarrow {{S}_{10}}=5\left( 2\left( 22 \right)+9\left( -12 \right) \right) \\\ & \Rightarrow {{S}_{10}}=5\left( 44-108 \right) \\\ & \Rightarrow {{S}_{10}}=5\left( -64 \right) \\\ & \Rightarrow {{S}_{10}}=-320 \\\ \end{aligned}
So, we get the value of S10{{S}_{10}} as -320.
Hence the answer is Option A.

Note : While solving this problem one might write the sum of 10 terms in A.P as S10=S4+S6{{S}_{10}}={{S}_{4}}+{{S}_{6}}. But it is wrong as in S4{{S}_{4}} and S6{{S}_{6}} first four terms are common and the last four terms are not included in the sum.