Solveeit Logo

Question

Mathematics Question on Variance and Standard Deviation

Let the Standard deviation of x1,x2x_1,x_2 and x3x_3 be 99 .Then ,the variance of 3x1+4,3x_1+4, 3x2+43x_2+4 and 3x3+43x_3+4 is

A

243243

B

8181

C

729729

D

99

E

733733

Answer

8181

Explanation

Solution

Given that:

Standard deviation of x1,x2x_1,x_2 and x3x_3 be .

The variance of random variables 3x1+4,3x2+43x_1 + 4, 3x_2 + 4, and 3x3+4,3x_3 + 4, to be found ;

For a random variable XX with standard deviation σσ , the variance of a linear transformation(aX+b)(aX + b), where a'a' and b'b' are constants and can be calculated as follows:

Var(aX+b)=a2×Var(X)Var(aX + b) = a^2 × Var(X)

applying this to all three given variables we get;

For, 3x1+4:Var(3x1+4)3x_1 + 4: Var(3x_1 + 4)

=32×Var(x1)=9×9=81= 3^2 × Var(x1) = 9 × 9 = 81

For, 3x2+4:Var(3x2+4)3x_2 + 4: Var(3x_2 + 4)

=32×Var(x2)=9×9=81= 3^2 × Var(x_2) = 9 × 9 = 81

For, 3x3+4:Var(3x3+4)3x_3 + 4: Var(3x_3 + 4)

=32×Var(x3)=9×9=81= 3^2 × Var(x3) = 9 × 9 = 81

Hence, the variance for the random variable is 8181 for each of them.(_Ans)