Solveeit Logo

Question

Mathematics Question on Differential equations

Let the solution y=y(x)y = y(x) of the differential equation dydxy=1+4sinx\frac{dy}{dx} - y = 1 + 4 \sin x satisfy y(π)=1y(\pi) = 1. Then y(π2)+10y\left( \frac{\pi}{2} \right) + 10 is equal to _____

Answer

Given differential equation:
dydxy=1+4sinx.\frac{dy}{dx} - y = 1 + 4 \sin x.
This is a first-order linear differential equation. To solve, we use an integrating factor (IF):
IF=ex.\text{IF} = e^{-x}.
Multiplying the entire equation by the integrating factor: exdydxexy=ex+4exsinx.e^{-x} \frac{dy}{dx} - e^{-x} y = e^{-x} + 4e^{-x} \sin x.
The left-hand side becomes the derivative of yexy e^{-x}: ddx(yex)=ex+4exsinx.\frac{d}{dx}(y e^{-x}) = e^{-x} + 4e^{-x} \sin x.
Integrating both sides:
yex=(ex+4exsinx)dx.y e^{-x} = \int \left(e^{-x} + 4e^{-x} \sin x\right) dx.
Evaluating the integral:
yex=exdx+4exsinxdx.y e^{-x} = \int e^{-x} dx + 4 \int e^{-x} \sin x \, dx.

The first integral is straightforward:
exdx=ex.\int e^{-x} dx = -e^{-x}.

For the second integral, we use integration by parts or known results:
4exsinxdx=2ex(sinx+cosx).4 \int e^{-x} \sin x \, dx = -2e^{-x} (\sin x + \cos x).
Thus: yex=ex2ex(sinx+cosx)+C.y e^{-x} = -e^{-x} - 2e^{-x} (\sin x + \cos x) + C.
Multiplying through by exe^x: y=12(sinx+cosx)+Cex.y = -1 - 2(\sin x + \cos x) + C e^x.
Using the initial condition y(π)=1y(\pi) = 1:
1=12(sinπ+cosπ)+Ceπ.1 = -1 - 2(\sin \pi + \cos \pi) + C e^\pi.
Since sinπ=0\sin \pi = 0 and cosπ=1\cos \pi = -1:
1=12(1)+Ceπ    1=1+Ceπ    C=0.1 = -1 - 2(-1) + C e^\pi \implies 1 = 1 + C e^\pi \implies C = 0.
Thus, the solution simplifies to: y=12(sinx+cosx).y = -1 - 2(\sin x + \cos x).
Evaluating at x=π2x = \frac{\pi}{2}:
y(π2)=12(sinπ2+cosπ2)=12(1+0)=3.y\left(\frac{\pi}{2}\right) = -1 - 2\left(\sin \frac{\pi}{2} + \cos \frac{\pi}{2}\right) = -1 - 2(1 + 0) = -3.
Calculating y(π2)+10y\left(\frac{\pi}{2}\right) + 10:
y(π2)+10=3+10=7.y\left(\frac{\pi}{2}\right) + 10 = -3 + 10 = 7.