Solveeit Logo

Question

Mathematics Question on Differential equations

Let the solution curve y=y(x)y=y(x) of the differential equation \frac{d y}{d x}-\frac{3 x^5 \tan ^{-1}\left(x^3\right)}{\left(1+x^6\right)^{3 / 2}} y=2 x \exp \left\\{\frac{x^3-\tan ^{-1} x^3}{\sqrt{\left(1+x^6\right)}}\right\\} pass through the origin Then y(1)y(1) is equal to :

A

exp(4+π42)\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)

B

exp(4π42)\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)

C

exp(1π42)\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)

D

exp(π442)\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)

Answer

exp(4π42)\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)

Explanation

Solution

The correct option is (B) : exp(4π42)\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)