Question
Mathematics Question on Differential equations
Let the solution curve y=y(x) of the differential equation (1+e2x)(dxdy+y)=1 pass through the point (0,2π). Then, limx→∞exy(x) is equal to
A
4π
B
43π
C
2π
D
23π
Answer
43π
Explanation
Solution
D.E(1+e2x)dxdy+y=1
⇒ dxdy+y=1+e2x1
I.F.=e∫1dx=ex
∴$$e^x y(x) = \int \frac{e^x}{1 + e^{2x}} \,dx
⇒$$e^x y(x) = \tan^{-1}(e^x) + C
∵ It passes through
(0,2π),C=2π−4π=4π
∴ limx→∞exy(x)=limx→∞tan−1(ex)+4π
=43π
So, the correct option is (B): 43π