Question
Mathematics Question on Differential equations
Let the solution curve y = y(x) of the differential equation
[x2−y2x+exy]xdxdy=x+[x2−y2x+exy]y
pass through the points (1, 0) and (2α, α), α> 0. Then α is equal to
A
21exp(6π+e−1)
B
21exp(3π+e−1)
C
exp(6π+e+1)
D
2exp(3π+e−1)
Answer
21exp(6π+e−1)
Explanation
Solution
The correct answer is (A) : 21exp(6π+e−1)
1−x2y21+exydxdy=1+1−x2y21+exyxy
Putting y = tx
(1−t21+et)(t+xdxdt)=1+(1−t21+et)t
⇒x(1−t21+et)dxdt=1
⇒ sin–1 t + e t = ln x + C
⇒sin−1(xy)+exy=Inx+C
at x = 1, y = 0
So, 0 + e 0 = 0 + C ⇒ C = 1
at (2α, α)
sin−1(xy)+exy=Inx+1
⇒6π+e21−1=In(2α)
⇒α=21e(6π+e21\-1)