Solveeit Logo

Question

Mathematics Question on Differential equations

Let the solution curve y = y(x) of the differential equation
[xx2y2+eyx]xdydx=x+[xx2y2+eyx]y[ \frac{x}{\sqrt{x² -y²}} + e^\frac{y}{x} ] x \frac{dy}{dx} = x + [ \frac{x}{\sqrt{x² -y²}} + e^\frac{y}{x} ]y
pass through the points (1, 0) and (2α, α), α> 0. Then α is equal to

A

12exp(π6+e1)\frac{1}{2} exp ( \frac{π}{6} + \sqrt{e} - 1 )

B

12exp(π3+e1)\frac{1}{2} exp ( \frac{π}{3} + e - 1 )

C

exp(π6+e+1)exp ( \frac{π}{6} + \sqrt{e} + 1 )

D

2exp(π3+e1)2 exp ( \frac{π}{3} + \sqrt{e} - 1 )

Answer

12exp(π6+e1)\frac{1}{2} exp ( \frac{π}{6} + \sqrt{e} - 1 )

Explanation

Solution

The correct answer is (A) : 12exp(π6+e1)\frac{1}{2} exp ( \frac{π}{6} + \sqrt{e} - 1 )
(11y2x2+eyx)dydx=1+(11y2x2+eyx)yx\left( \frac{1}{ \sqrt{1 - \frac{y²}{x²}}} + e^\frac{y}{x} \right) \frac{dy}{dx} = 1 + \left( \frac{1}{\sqrt{1 - \frac{y²}{x²}}} + e^\frac{y}{x} \right) \frac{y}{x}
Putting y = tx
(11t2+et)(t+xdtdx)=1+(11t2+et)t\left( \frac{1}{\sqrt{1 - t²}} + e^t \right) \left( t + x \frac{dt}{dx} \right) = 1 + \left( \frac{1}{\sqrt{1 - t²}} + e^t \right)t
x(11t2+et)dtdx=1⇒ x ( \frac{1}{\sqrt{1 - t²}} + e^t ) \frac{dt}{dx} = 1
⇒ sin–1 t + e t = ln x + C
sin1(yx)+eyx=Inx+C⇒sin^{-1} ( \frac{y}{x} ) + e^\frac{y}{x} = In x + C
at x = 1, y = 0
So, 0 + e 0 = 0 + CC = 1
at (2α, α)
sin1(yx)+eyx=Inx+1sin^{-1} ( \frac{y}{x} ) + e^\frac{y}{x} = In x + 1
π6+e121=In(2α)⇒ \frac{π}{6} + e^\frac{1}{2} - 1 = In (2α)
α=12e(π6+e12\-1)⇒ α = \frac{1}{2} e^{( \frac{π}{6} + e^\frac{1}{2} \- 1 )}