Solveeit Logo

Question

Mathematics Question on types of differential equations

Let the solution curve of the differential equation xdydxy=y2+16x2,x\frac{dy}{dx}-y=\sqrt{y^2+16x^2}, y(1) = 3 be y = y(x). Then y(2) is equal to

A

15

B

11

C

13

D

17

Answer

15

Explanation

Solution

The correct option is(A): 15

xdydxy=y2+16x2x\frac{dy}{dx}-y=\sqrt{y^2+16x^2}

y = 4 x tan θ

log |secθ + tanθ| = log |x | + C

y(1) = 3 ⇒ 3 = 4 tanθ

C = ln 2

∴ |secθ + tanθ| = 2|x |

To find y(2) put x = 2

⇒tan⁡θ= y8\frac{y}{8}

(secθ + tanθ)2 = 16

⇒ y = 15