Question
Mathematics Question on Tangents and Normals
Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 tanx(cosx – y). If the curve passes through the point (π/4, 0) then the value of
∫02πydx
is equal to :
A
(2−2)+2π
B
2−2π
C
(2+2)+2π
D
2+2π
Answer
2−2π
Explanation
Solution
The correct answer is (B) : 2−2π
dxdy=2tanx(cosx−y)
⇒dxdy+2tanxy=2sinx
I.F=e∫2tanxdx=sec2x
∴ Solution of D.E. will be
y(x)sec2x=∫2sinxsec2xdx
ysec2x=2secx+c
∵ Curve passes through
(4π,0)
∴c=−22
∴y=2cosx−22cos2x
∴∫02πydx=∫02π(2cosx−22cos2x)dx
=2−22⋅4π
=2−2π