Solveeit Logo

Question

Mathematics Question on Tangents and Normals

Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 tanx(cosx – y). If the curve passes through the point (π/4, 0) then the value of
0π2ydx\int_{0}^{\frac{\pi}{2}} y \,dx
is equal to :

A

(22)+π2(2-\sqrt2)+\frac{π}{\sqrt2}

B

2π22-\frac{π}{\sqrt2}

C

(2+2)+π2(2+\sqrt2)+\frac{π}{\sqrt2}

D

2+π22+\frac{π}{\sqrt2}

Answer

2π22-\frac{π}{\sqrt2}

Explanation

Solution

The correct answer is (B) : 2π22-\frac{π}{\sqrt2}
dydx=2tanx(cosxy)\frac{dy}{dx}=2tan⁡x(cos⁡x−y)
dydx+2tanxy=2sinx⇒\frac{dy}{dx}+2tan⁡xy=2sin⁡x
I.F=e2tanxdx=sec2xI.F=e^{∫2tan⁡xdx}=sec^2⁡x
∴ Solution of D.E. will be
y(x)sec2x=2sinxsec2xdxy(x)sec^2⁡x=∫2sin⁡xsec^2⁡xdx
ysec2x=2secx+cysec^2⁡x=2sec⁡x+c
∵ Curve passes through
(π4,0)(\frac{π}{4},0)
c=22∴c=−2\sqrt2
y=2cosx22cos2x∴y=2cos⁡x−2\sqrt2cos^2⁡x
0π2ydx=0π2(2cosx22cos2x)dx\therefore \int_{0}^{\frac{\pi}{2}} y \,dx = \int_{0}^{\frac{\pi}{2}} (2\cos x - 2\sqrt{2}\cos^2 x) \,dx
=222π4=2−2\sqrt2⋅\frac{π}{4}
=2π2=2−\frac{π}{\sqrt2}