Question
Mathematics Question on Shortest Distance between Two Lines
Let the shortest distance between the lines L:−2x−5=0y−λ=1z+λ,λ≥0 and L1:x+1=y−1=4−z be 26 If (α,β,γ) lies on L, then which of the following is NOT possible?
A
α+2y=24
B
2α+γ=7
C
α−2γ=19
D
2α−γ=9
Answer
α+2y=24
Explanation
Solution
b1×b2=∣∣i^−21j^01k^1−1∣∣=−i^−j^−2k^
a2−a1=6i^+(λ−1)j^+(−λ−4)k^
26=∣∣1+1+4−6−λ+1+2λ+8∣∣
∣λ+3∣=12⇒λ=9,−15
α=−2k+5,γ=k−λ where k∈R
⇒α+2γ=5−2λ=−13,35