Solveeit Logo

Question

Mathematics Question on Shortest Distance between Two Lines

Let the shortest distance between the lines L:x52=yλ0=z+λ1,λ0L: \frac{x-5}{-2}=\frac{y-\lambda}{0}=\frac{z+\lambda}{1}, \lambda \geq 0 and L1:x+1=y1=4zL_1: x+1=y-1=4-z be 262 \sqrt{6} If (α,β,γ)(\alpha, \beta, \gamma) lies on LL, then which of the following is NOT possible?

A

α+2y=24\alpha+2 y=24

B

2α+γ=72 \alpha+\gamma=7

C

α2γ=19\alpha-2 \gamma=19

D

2αγ=92 \alpha-\gamma=9

Answer

α+2y=24\alpha+2 y=24

Explanation

Solution

b1​​×b2​​=∣∣​i^−21​j^​01​k^1−1​∣∣​=−i^−j^​−2k^

a2​​−a1​​=6i^+(λ−1)j^​+(−λ−4)k^
26​=∣∣​1+1+4​−6−λ+1+2λ+8​∣∣​
∣λ+3∣=12⇒λ=9,−15
α=−2k+5,γ=k−λ where k∈R
⇒α+2γ=5−2λ=−13,35