Solveeit Logo

Question

Mathematics Question on Application of derivatives

Let the set of all values of pp, for which f(x)=(p26p+8)(sin22xcos22x)+2(2p)x+7f(x) = (p^2 - 6p + 8)(\sin^2 2x - \cos^2 2x) + 2(2 - p)x + 7 does not have any critical point, be the interval (a,b)(a, b). Then 16ab16ab is equal to _____ .

Answer

f(x)=(p26p+8)cos4x+2(2p)x+7f(x) = - (p^2 - 6p + 8) \cos 4x + 2(2 - p)x + 7

f(x)=+4(p26p+8)sin4x+(42p)0f'(x) = +4 \left( p^2 - 6p + 8 \right) \sin 4x + (4 - 2p) \neq 0

sin4x2p44(p4)(p2)\sin 4x \neq \frac{2p - 4}{4(p-4)(p-2)}

sin4x2(p2)4(p4)(p2)\sin 4x \neq \frac{2(p-2)}{4(p-4)(p-2)}

p2p \neq 2

sin4x=12(p4)\sin 4x = \frac{1}{2(p-4)}

    12(p4)>1\implies \left| \frac{1}{2(p-4)} \right| > 1

On solving, we get:

p(72,92)\therefore p \in \left( \frac{7}{2}, \frac{9}{2} \right)

Hence a=72a = \frac{7}{2}, b=92b = \frac{9}{2}.

16ab=252\therefore 16ab = 252