Solveeit Logo

Question

Mathematics Question on Maxima and Minima

Let the set of all positive values of λ\lambda, for which the point of local minimum of the function (1+x(λ2x2))x2+x+2x2+5x+6<0(1 + x (\lambda^2 - x^2)) \frac{x^2 + x + 2}{x^2 + 5x + 6} < 0 be (α,β)(\alpha, \beta).
Then α2+β2\alpha^2 + \beta^2 is equal to ________.

Answer

Step 1: Solve x2+x+2x2+5x+6<0\frac{x^2 + x + 2}{x^2 + 5x + 6} < 0

Factorize the numerator and denominator:

x2+x+2x2+5x+6=x2+x+2(x+2)(x+3).\frac{x^2 + x + 2}{x^2 + 5x + 6} = \frac{x^2 + x + 2}{(x + 2)(x + 3)}.

Analyze the sign of the inequality x2+x+2(x+2)(x+3)<0\frac{x^2 + x + 2}{(x + 2)(x + 3)} < 0 using the critical points:

  • The critical points are x=3x = -3, x=2x = -2, and the roots of x2+x+2=0x^2 + x + 2 = 0.
  • Solve x2+x+2=0x^2 + x + 2 = 0 using the discriminant:
  • The roots are complex, so x2+x+2>0x^2 + x + 2 > 0 for all xRx \in \mathbb{R}.

Thus, the inequality reduces to:

\frac{1}{(x + 2)(x + 3)} < 0\.

From the critical points x=3x = -3 and x=2x = -2, analyze the intervals:

  • For x(,3)x \in (-\infty, -3), the product (x+2)(x+3)>0(x + 2)(x + 3) > 0.
  • For x(3,2)x \in (-3, -2), the product (x+2)(x+3)<0(x + 2)(x + 3) < 0.
  • For x(2,)x \in (-2, \infty), the product (x+2)(x+3)>0(x + 2)(x + 3) > 0.

Therefore, the solution to 1(x+2)(x+3)<0\frac{1}{(x+2)(x+3)} < 0 is:

x(3,2).x \in (-3, -2). (1)\hspace{20pt}(1)

Step 2: Find the local minima of f(x)f(x)

The function is given as:

f(x)=1+x(λ2x2).f(x) = 1 + x(\lambda^2 - x^2).

Find f(x)f'(x):

f(x)=(λ2x2)+(2x)x.f'(x) = (\lambda^2 - x^2) + (-2x)x. f(x)=λ2x22x2=λ23x2.f'(x) = \lambda^2 - x^2 - 2x^2 = \lambda^2 - 3x^2.

Set f(x)=0f'(x) = 0 to find the critical points:

λ23x2=0.\lambda^2 - 3x^2 = 0. x2=λ23.x^2 = \frac{\lambda^2}{3}. x=±λ3.x = \pm \frac{\lambda}{\sqrt{3}}.

From the critical points x=±λ3x = \pm \frac{\lambda}{\sqrt{3}}:

  • At x=λ3x = \frac{\lambda}{\sqrt{3}}, f(x)f(x) achieves a local maximum.
  • At x=λ3x = -\frac{\lambda}{\sqrt{3}}, f(x)f(x) achieves a local minimum.

Thus, the point of local minimum is:

x=λ3.(2) x = -\frac{\lambda}{\sqrt{3}}. \hspace{20pt}(2)

Step 3: Condition for x(3,2)x \in (-3, -2)

From equation (1), x(3,2)x \in (-3, -2). Substituting x=λ3x = -\frac{\lambda}{\sqrt{3}}:

3<λ3<2.-3 < -\frac{\lambda}{\sqrt{3}} < -2.

Multiply through by 1-1 (reversing the inequality):

3 > \frac{\lambda}{\sqrt{3}} > 2\.

Multiply through by 3\sqrt{3}:

33>λ>23.3\sqrt{3} > \lambda > 2\sqrt{3}.

Thus, the set of all positive λ\lambda values is:

λ(23,33).\lambda \in (2\sqrt{3}, 3\sqrt{3}).

Step 4: Compute α2+β2\alpha^2 + \beta^2

From the interval λ(23,33)\lambda \in (2\sqrt{3}, 3\sqrt{3}), we have:

  • α=23,β=33.\alpha = 2\sqrt{3}, \beta = 3\sqrt{3}.

Compute α2+β2\alpha^2 + \beta^2:

α2+β2=(23)2+(33)2.\alpha^2 + \beta^2 = (2\sqrt{3})^2 + (3\sqrt{3})^2. α2+β2=4(3)+9(3)=12+27=39.\alpha^2 + \beta^2 = 4(3) + 9(3) = 12 + 27 = 39.

Final Answer is 39.