Question
Mathematics Question on Maxima and Minima
Let the set of all positive values of λ, for which the point of local minimum of the function (1+x(λ2−x2))x2+5x+6x2+x+2<0 be (α,β).
Then α2+β2 is equal to ________.
Step 1: Solve x2+5x+6x2+x+2<0
Factorize the numerator and denominator:
x2+5x+6x2+x+2=(x+2)(x+3)x2+x+2.
Analyze the sign of the inequality (x+2)(x+3)x2+x+2<0 using the critical points:
- The critical points are x=−3, x=−2, and the roots of x2+x+2=0.
- Solve x2+x+2=0 using the discriminant:
- The roots are complex, so x2+x+2>0 for all x∈R.
Thus, the inequality reduces to:
\frac{1}{(x + 2)(x + 3)} < 0\.
From the critical points x=−3 and x=−2, analyze the intervals:
- For x∈(−∞,−3), the product (x+2)(x+3)>0.
- For x∈(−3,−2), the product (x+2)(x+3)<0.
- For x∈(−2,∞), the product (x+2)(x+3)>0.
Therefore, the solution to (x+2)(x+3)1<0 is:
x∈(−3,−2). (1)
Step 2: Find the local minima of f(x)
The function is given as:
f(x)=1+x(λ2−x2).
Find f′(x):
f′(x)=(λ2−x2)+(−2x)x. f′(x)=λ2−x2−2x2=λ2−3x2.
Set f′(x)=0 to find the critical points:
λ2−3x2=0. x2=3λ2. x=±3λ.
From the critical points x=±3λ:
- At x=3λ, f(x) achieves a local maximum.
- At x=−3λ, f(x) achieves a local minimum.
Thus, the point of local minimum is:
x=−3λ.(2)
Step 3: Condition for x∈(−3,−2)
From equation (1), x∈(−3,−2). Substituting x=−3λ:
−3<−3λ<−2.
Multiply through by −1 (reversing the inequality):
3 > \frac{\lambda}{\sqrt{3}} > 2\.
Multiply through by 3:
33>λ>23.
Thus, the set of all positive λ values is:
λ∈(23,33).
Step 4: Compute α2+β2
From the interval λ∈(23,33), we have:
- α=23,β=33.
Compute α2+β2:
α2+β2=(23)2+(33)2. α2+β2=4(3)+9(3)=12+27=39.