Solveeit Logo

Question

Mathematics Question on Trigonometry

Let the set of all aRa \in \mathbb{R} such that the equation cos2x+asinx=2a7\cos 2x + a \sin x = 2a - 7 has a solution be [p,q][p, q] and r=tan9tan271cot63+tan81r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ}, then pqrpqr is equal to ______.

Answer

Given the equation:
cos2x+asinx=2a7\cos 2x + a \sin x = 2a - 7

We need to find the set of all aRa \in \mathbb{R} such that this equation has a solution in the interval [p,q][p, q], and find the value of pqrpqr where:
r=tan9tan271cot63+tan81r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ}

Step 1. Analyzing the Equation: Rewrite the equation as:
a(sinx2)=2(sinx2)(sinx+2)a(\sin x - 2) = 2(\sin x - 2)(\sin x + 2)

For sinx=2\sin x = 2, we have:
a=2(sinx+2)a = 2(\sin x + 2)

Therefore, the values of aa lie in the interval:
a[2,6]a \in [2, 6]

So, p=2p = 2 and q=6q = 6.

Step 2. Calculating rr: Given:
r=tan9tan271cot63+tan81r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ}

Using trigonometric identities:
cot63+tan81=1tan27+tan81\cot 63^\circ + \tan 81^\circ = \frac{1}{\tan 27^\circ + \tan 81^\circ}

Simplifying further:
r=4r = 4

Step 3. Calculating pqr:
pqr=264=48p · q · r = 2 · 6 · 4 = 48