Solveeit Logo

Question

Question: Let the sequence \< b<sub>n</sub>\> of real numbers satisfy the recurrence relation : \(\frac{x^{3} ...

Let the sequence < bn> of real numbers satisfy the recurrence relation : x3+x216x+20(x2)2\frac{x^{3} + x^{2} - 16x + 20}{(x - 2)^{2}}, bn¹ 0, then f(x)=cosxsinx,f(x) = \cos x - \sin x, is equal to –

A

0

B

C

5

D

(1,1)( - 1,1)

Answer

5

Explanation

Solution

Letbn = b

Then, bn +1 = 13\frac { 1 } { 3 }

bn + 1 = 13(2limnbn+125limnbn2)\frac { 1 } { 3 } \left( 2 \lim _ { n \rightarrow \infty } b _ { n } + \frac { 125 } { \lim _ { n \rightarrow \infty } b _ { n } ^ { 2 } } \right)

Ž b = 13\frac { 1 } { 3 } (2b+125b2)\left( 2 b + \frac { 125 } { b ^ { 2 } } \right)

Ž = 125b2\frac { 125 } { b ^ { 2 } } Ž b3 = 125 Ž b = 5