Solveeit Logo

Question

Question: Let the sequence a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>.....a<sub>n</sub> form an A.P. then <i...

Let the sequence a1, a2, a3.....an form an A.P. then

a2n12+a2n2a _ { 2 n - 1 } ^ { 2 } + a _ { 2 n } ^ { 2 } is equal to-

A

n2n1(a12a2n2)\frac { \mathrm { n } } { 2 \mathrm { n } - 1 } \left( \mathrm { a } _ { 1 } ^ { 2 } - \mathrm { a } _ { 2 \mathrm { n } } ^ { 2 } \right)

B

2nn1(a2n2a12)\frac { 2 n } { n - 1 } \left( a _ { 2 n } ^ { 2 } - a _ { 1 } ^ { 2 } \right)

C
D

None of these

Answer

n2n1(a12a2n2)\frac { \mathrm { n } } { 2 \mathrm { n } - 1 } \left( \mathrm { a } _ { 1 } ^ { 2 } - \mathrm { a } _ { 2 \mathrm { n } } ^ { 2 } \right)

Explanation

Solution

+

=(a1–a2)(a1+a2)+(a3–a4)(a3+a4)+...+(a2n–1–a2n) (a2n–1 + a2n)

= – d(a1 + a2 + .......a2n)

= – d a2n = a1 + (2n – 1) d

= – n(a1 + a2n) × d =

= .