Solveeit Logo

Question

Mathematics Question on Functions

Let the range of the function f(x)=12+sin3x+cos3x,xRbe [a,b].f(x) = \frac{1}{2 + \sin 3x + \cos 3x}, \, x \in \mathbb{R} \, \text{be } [a, b]. If α\alpha and β\beta are respectively the arithmetic mean (A.M.) and the geometric mean (G.M.) of aa and bb, then αβ\frac{\alpha}{\beta} is equal to:

A

2\sqrt{2}

B

2

C

π\sqrt{\pi}

D

π\pi

Answer

2\sqrt{2}

Explanation

Solution

We are given the function:

f(x)=12+sin3x+cos3xf(x) = \frac{1}{2 + \sin 3x + \cos 3x}

The function involves a trigonometric expression inside the denominator. First, we analyze the range of the expression 2+sin3x+cos3x2 + \sin 3x + \cos 3x.

Step 1: Analyze the term sin3x+cos3x\sin 3x + \cos 3x.

We know that:

sin3x+cos3x=2sin(3x+π4)\sin 3x + \cos 3x = \sqrt{2} \sin \left(3x + \frac{\pi}{4}\right)

Thus, the maximum value of sin3x+cos3x\sin 3x + \cos 3x is 2\sqrt{2}, and the minimum value is 2-\sqrt{2}.

Step 2: Find the range of 2+sin3x+cos3x2 + \sin 3x + \cos 3x.

Adding 2 to the above expression, we get:

2+sin3x+cos3x=2+2sin(3x+π4)2 + \sin 3x + \cos 3x = 2 + \sqrt{2} \sin \left(3x + \frac{\pi}{4}\right)

The minimum value of 2+sin3x+cos3x2 + \sin 3x + \cos 3x occurs when sin3x+cos3x=2\sin 3x + \cos 3x = -\sqrt{2}, giving:

222 - \sqrt{2}

The maximum value occurs when sin3x+cos3x=2\sin 3x + \cos 3x = \sqrt{2}, giving:

2+22 + \sqrt{2}

Thus, the range of f(x)f(x) is:

12+2 to 122\frac{1}{2 + \sqrt{2}} \text{ to } \frac{1}{2 - \sqrt{2}}

Step 3: Find the A.M. and G.M.

Let a=2+2a = 2 + \sqrt{2} and b=22b = 2 - \sqrt{2}. The A.M. (Arithmetic Mean) and G.M. (Geometric Mean) of aa and bb are given by:

α=a+b2andβ=ab\alpha = \frac{a + b}{2} \quad \text{and} \quad \beta = \sqrt{a \cdot b}

Calculating a+ba + b:

a+b=(2+2)+(22)=4a + b = (2 + \sqrt{2}) + (2 - \sqrt{2}) = 4

Thus,

α=42=2\alpha = \frac{4}{2} = 2

Now, calculate aba \cdot b:

ab=(2+2)(22)=42=2a \cdot b = (2 + \sqrt{2})(2 - \sqrt{2}) = 4 - 2 = 2

Thus,

β=2\beta = \sqrt{2}

Step 4: Calculate αβ\frac{\alpha}{\beta}

Finally, we calculate:

αβ=22=2\frac{\alpha}{\beta} = \frac{2}{\sqrt{2}} = \sqrt{2}

Thus, the value of αβ\frac{\alpha}{\beta} is 2\sqrt{2}.