Solveeit Logo

Question

Mathematics Question on Sequences and Series

Let the positive integers be written in the form :
Pattern
If the kthk^\text{th} row contains exactly kk numbers for every natural number kk, then the row in which the number 53105310 will be, is _____

Answer

The total number of elements in the first n rows is:
S=1+2+3++Tn=n(n+1)2.S = 1 + 2 + 3 + \dots + T_n = \frac{n(n+1)}{2}.
To find the row containing 5310, solve:
n(n+1)2=5310.\frac{n(n+1)}{2} = 5310.
Start testing values:
n=100,Tn=1001012=5050.n = 100, \quad T_n = \frac{100 \cdot 101}{2} = 5050.
n=101,Tn=1011022=5151.n = 101, \quad T_n = \frac{101 \cdot 102}{2} = 5151.
n=102,Tn=1021032=5253.n = 102, \quad T_n = \frac{102 \cdot 103}{2} = 5253.
n=103,Tn=1031042=5356.n = 103, \quad T_n = \frac{103 \cdot 104}{2} = 5356.
Since 5310 lies between 5253 and 5356, it is in the 103rd row.
Final Answer: 103.