Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let the position vectors of the vertices A,BA, B and CC of a triangle be 2i+2j+k,i+2j+2kand2i+j+2k2\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \quad \text{and} \quad 2\mathbf{i} + \mathbf{j} + 2\mathbf{k} respectively. Let l1,l2l_1, l_2 and l3l_3 be the lengths of the perpendiculars drawn from the ortho center of the triangle on the sides AB,BCAB, BC and CACA respectively. Then l12+l22+l32l_1^2 + l_2^2 + l_3^2 equals:

A

15\frac{1}{5}

B

12\frac{1}{2}

C

14\frac{1}{4}

D

13\frac{1}{3}

Answer

12\frac{1}{2}

Explanation

Solution

Given that ΔABC\Delta ABC is equilateral, the orthocenter and centroid coincide.

The coordinates of the centroid GG are:
G=(53,53,53).G = \left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right).

Considering point A(2,2,1)A(2, 2, 1), point B(1,2,2)B(1, 2, 2), and point C(2,1,2)C(2, 1, 2), the midpoint DD of side ABAB is calculated as:
D=(32,2,32).D = \left(\frac{3}{2}, 2, \frac{3}{2}\right).

To find the lengths of perpendiculars from GG to the sides, we use the distance formula:
1=136+19+136=16.\ell_1 = \sqrt{\frac{1}{36} + \frac{1}{9} + \frac{1}{36}} = \frac{1}{\sqrt{6}}.

Since the triangle is equilateral, we have:
1=2=3=16.\ell_1 = \ell_2 = \ell_3 = \frac{1}{\sqrt{6}}.

The sum of the squares of these perpendicular lengths is:
12+22+32=(16)2+(16)2+(16)2.\ell_1^2 + \ell_2^2 + \ell_3^2 = \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2.

Simplifying:
12+22+32=16+16+16=12.\ell_1^2 + \ell_2^2 + \ell_3^2 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}.

The Correct answer is: 12\frac{1}{2}