Solveeit Logo

Question

Question: Let the position vectors of the points P and Q be \[4\overrightarrow i + \overrightarrow j + \lambda...

Let the position vectors of the points P and Q be 4i+j+λk4\overrightarrow i + \overrightarrow j + \lambda \overrightarrow k and 2ij+λk2\overrightarrow i - \overrightarrow j + \lambda \overrightarrow k respectively. Vector ij+6k\overrightarrow i - \overrightarrow j + 6\overrightarrow k is perpendicular to the plane containing the origin and the points P and Q. Then λ\lambda equals.
A)12A)\dfrac{{ - 1}}{2}
B)12B)\dfrac{1}{2}
C)1C)1
D)1D) - 1

Explanation

Solution

First, we will define the parallel axis and perpendicular. We know Parallel lines are the same lines from a distance apart. Perpendicular lines are the lines that will intersect at the right angle 900{90^0}. Vectors are the values with both magnitudes and direction.

Complete step-by-step solution:
From the given that, position vectors of the given points P and Q be 4i+j+λk4\overrightarrow i + \overrightarrow j + \lambda \overrightarrow k and2ij+λk2\overrightarrow i - \overrightarrow j + \lambda \overrightarrow k .
Which means, P=4i+j+λk\overrightarrow P = 4\overrightarrow i + \overrightarrow j + \lambda \overrightarrow k and Q=2ij+λk\overrightarrow Q = 2\overrightarrow i - \overrightarrow j + \lambda \overrightarrow k . The origin point is O.
Now let us make the given vectors perpendicular to the plane of the origin O and the two points P, Q.
Which is the OP×OQ\overrightarrow {OP} \times \overrightarrow {OQ} (perpendicular with the origin point from the given points)
Since the origin points of the vector are i+j+k\overrightarrow i + \overrightarrow j + \overrightarrow k , and the points are given us P=4i+j+λk\overrightarrow P = 4\overrightarrow i + \overrightarrow j + \lambda \overrightarrow k andQ=2ij+λk\overrightarrow Q = 2\overrightarrow i - \overrightarrow j + \lambda \overrightarrow k .
Make these values into 3×33 \times 3the matrix to find the new vector and that vector will be parallel to the given ij+6k\overrightarrow i - \overrightarrow j + 6\overrightarrow k .
Thus, for the 3×33 \times 3matrix, OP×OQ\overrightarrow {OP} \times \overrightarrow {OQ} = \left| {\begin{array}{*{20}{c}} {\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k } \\\ 4&1&\lambda \\\ 2&{ - 1}&\lambda \end{array}} \right| (concerning the matrix elements)
Hence taking the determinant we get,OP×OQ\overrightarrow {OP} \times \overrightarrow {OQ} = \left| {\begin{array}{*{20}{c}} {\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k } \\\ 4&1&\lambda \\\ 2&{ - 1}&\lambda \end{array}} \right| i(λ+λ)j(4λ2λ)+k(4λ2λ) \Rightarrow \overrightarrow i (\lambda + \lambda ) - \overrightarrow j (4\lambda - 2\lambda ) + \overrightarrow k ( - 4\lambda - 2\lambda )
2λi2λj+6λk\Rightarrow 2\lambda \overrightarrow i - 2\lambda \overrightarrow j + - 6\lambda \overrightarrow k
Hence, we get, for OP×OQ\overrightarrow {OP} \times \overrightarrow {OQ} 2λi2λj+6λk\Rightarrow 2\lambda \overrightarrow i - 2\lambda \overrightarrow j + - 6\lambda \overrightarrow k, which is the new vector.
Now making the new vector 2λi2λj+6λk2\lambda \overrightarrow i - 2\lambda \overrightarrow j + - 6\lambda \overrightarrow k parallel to the given Vector ij+6k\overrightarrow i - \overrightarrow j + 6\overrightarrow k is perpendicular to the plane containing the origin.
Thus, for the parallel axis compare the two vectors with the corresponding vectors like for vector ii we have, two and one.
Therefore, comparing into equation format we get, 12λ=12λ=66\dfrac{1}{{2\lambda }} = \dfrac{{ - 1}}{{ - 2\lambda }} = \dfrac{6}{{ - 6}} (representing vectors I, j, and k)
Simplifying the equation we get, 12λ=12λ=6612λ=12λ=1\dfrac{1}{{2\lambda }} = \dfrac{{ - 1}}{{ - 2\lambda }} = \dfrac{6}{{ - 6}} \Rightarrow \dfrac{1}{{2\lambda }} = \dfrac{1}{{2\lambda }} = - 1
Hence if we substitute the lambda value as 12\dfrac{{ - 1}}{2}then we get 12(12)=12(12)=1 \Rightarrow \dfrac{1}{{2(\dfrac{{ - 1}}{2})}} = \dfrac{1}{{2(\dfrac{{ - 1}}{2})}} = - 1
And thus, 1=1=1 - 1 = - 1 = - 1 which satisfies the 12λ=12λ=66\dfrac{1}{{2\lambda }} = \dfrac{{ - 1}}{{ - 2\lambda }} = \dfrac{6}{{ - 6}} (as all the values are same)
Hence λ=12\lambda = \dfrac{{ - 1}}{2}, the option A)12A)\dfrac{{ - 1}}{2} is correct.

Note: If we substitute the values like in options B)12B)\dfrac{1}{2} C)1C)1 D)1D) - 1 we don’t get the values of the equations to be equal.
Example apply λ=1\lambda = 1 in 12λ=12λ=66\dfrac{1}{{2\lambda }} = \dfrac{{ - 1}}{{ - 2\lambda }} = \dfrac{6}{{ - 6}} then we get, 12=12=1\dfrac{1}{2} = \dfrac{1}{2} = - 1 (all the values are not same).
Hence after finding the equation form of the vectors, we need to substitute the correct value of the lambda.
Scalar means magnitudes only, but in vector values, we have both magnitude and direction