Solveeit Logo

Question

Mathematics Question on Differential equations

Let the population of rabbits surviving at a time t be governed by the differential equation dp(t)/dt=(1/2)p(t)200.dp(t)/dt = (1/2) p(t) - 200. If p(0)=100, p(0) = 100, then p(t) equals

A

600500et/2 600 - 500 \,e^{t/2}

B

400300et/2400 - 300\, e^{-t/2}

C

400300et/2400 - 300 \, e^{t/2 }

D

300200et/2.300 - 200 \, e^{-t/2.}

Answer

400300et/2400 - 300 \, e^{t/2 }

Explanation

Solution

Since dpdt12p(t)=200\frac{dp}{dt} - \frac{1}{2} p\left(t\right) = -200 is lmear in yy I.F.=e12dt=et2\therefore I.F. = e^{\int \frac{1}{2} dt} = e^{-\frac{t}{2}} \therefore role is pet2=200(et2)dt+Cp\cdot e^{\frac{-t}{2}} = \int -200\cdot\left(e^{-\frac{t}{2}}\right)dt + C =200et/21/2+C= -200\cdot \frac{e^{-t/ 2}}{-1/ 2}+C =400et/2+C= 400 \,e^{-t/2} + C Since p(0)=100p\left(0\right) = 100 100e0=400e0+C\therefore 100 \,e^{0} = 400\, e^{0} + C 100=400+C\Rightarrow 100 = 400 + C C=300\Rightarrow C = - 300 p(t)=400300et/2\therefore p\left(t\right) = 400 - 300 \,e^{t/2}