Solveeit Logo

Question

Mathematics Question on Angle between Two Planes

Let the points on the plane P be equidistant from the points (–4, 2, 1) and (2, –2, 3). Then the acute angle between the plane P and the plane 2x + y + 3z = 1 is

A

π6\frac{π}{6}

B

π4\frac{π}{4}

C

π3\frac{π}{3}

D

5π12\frac{5π}{12}

Answer

π3\frac{π}{3}

Explanation

Solution

Let P(x,y,z)P(x, y, z) be any point on plane P1P_1

Thereafter, (x+4)2+(y2)2+(z1)2=(x2)2+(y+2)2+(z3)2(x+4)^2+(y−2)^2+(z−1)^2=(x−2)^2+(y+2)^2+(z−3)^2

12x8y+4z+4=0⇒12x−8y+4z+4=0

3x2y+z+1=0⇒3x−2y+z+1=0

Also, P2:2x+y\+3z=1P_2 : 2x + y \+ 3z = 1

p1  and  p2p_ 1\;and \; p_2 create the angle of

Cosθ=62+314Cos θ = | \frac{6-2+3}{14}|

θ=π3⇒ θ = \frac{π }{ 3}

Hence, the correct option is (C): π3\frac{π}{3}