Solveeit Logo

Question

Mathematics Question on Distance of a Point From a Line

Let the point P(α,β)P(\alpha, \beta) be at a unit distance from each of the two lines L1:3x4y+12=0L _1: 3 x -4 y +12=0, and L2:8x+6y+11=0L _2: 8 x +6 y +11=0 If PP lies below L1L _1 and above L2L _2, then 100(α+β)100(\alpha+\beta) is equal to

A

14-14

B

42

C

22-22

D

14

Answer

14

Explanation

Solution

By observing origin and P lies in same region.
L1​(0,0)>0;L1​(α,β)>0⇒3α−4β+12>0 1=∣∣​53α−4β+12​∣∣​
3α−4β+12=5......(1)
Similarly for L2​
L2​(0,0)>0;L2​(α,β)>0
1=∣∣​108α+6β+11​∣∣​⇒8α+6β+11=10.......(2)
Solving (1) and (2)
α=−2523​;β=100106​
100(α+β)=100(100−92​+100106​)=14