Solveeit Logo

Question

Question: Let the point A divide the line segment joining the points P(-1,-1,2) and Q(5,5,10) internally in th...

Let the point A divide the line segment joining the points P(-1,-1,2) and Q(5,5,10) internally in the ratio r: 1(r > 0). If O is the origin and (OQOA)15OP×OA2=10(\overline{OQ} \cdot \overline{OA}) - \frac{1}{5}|\overline{OP} \times \overline{OA}|^2 = 10 then the value of r

Answer

7

Explanation

Solution

The position vector of point A is given by OA=rOQ+OPr+1\vec{OA} = \frac{r\vec{OQ} + \vec{OP}}{r+1}.

We calculate the dot product: OQOA=5,5,105r1,5r1,10r+2r+1=150r+10r+1\vec{OQ} \cdot \vec{OA} = \langle 5, 5, 10 \rangle \cdot \frac{\langle 5r-1, 5r-1, 10r+2 \rangle}{r+1} = \frac{150r+10}{r+1}.

We calculate the cross product: OP×OA=rr+1(OP×OQ)=rr+120,20,0\vec{OP} \times \vec{OA} = \frac{r}{r+1}(\vec{OP} \times \vec{OQ}) = \frac{r}{r+1} \langle -20, 20, 0 \rangle.

The squared magnitude of the cross product is: OP×OA2=(rr+1)2((20)2+202)=800r2(r+1)2|\vec{OP} \times \vec{OA}|^2 = \left(\frac{r}{r+1}\right)^2 ((-20)^2 + 20^2) = \frac{800r^2}{(r+1)^2}.

Substitute into the given equation: 150r+10r+115(800r2(r+1)2)=10\frac{150r+10}{r+1} - \frac{1}{5} \left(\frac{800r^2}{(r+1)^2}\right) = 10 150r+10r+1160r2(r+1)2=10\frac{150r+10}{r+1} - \frac{160r^2}{(r+1)^2} = 10

Multiplying by (r+1)2(r+1)^2: (150r+10)(r+1)160r2=10(r+1)2(150r+10)(r+1) - 160r^2 = 10(r+1)^2 150r2+160r+10160r2=10(r2+2r+1)150r^2 + 160r + 10 - 160r^2 = 10(r^2 + 2r + 1) 10r2+160r+10=10r2+20r+10-10r^2 + 160r + 10 = 10r^2 + 20r + 10 20r2140r=020r^2 - 140r = 0 20r(r7)=020r(r-7) = 0

Since r>0r>0, we have r=7r=7.