Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let the plane
P:r.a=dP : \stackrel{→}{r} . \stackrel{→}{a} = d
contain the line of intersection of two planes
r.(i^+3j^k^)=6\stackrel{→}{r} . ( \hat{i} + 3\hat{j} - \hat{k} ) = 6
and
r.(6i^+5j^k^)=7\stackrel{→}{r} . ( -6\hat{i} + 5\hat{j} - \hat{k} ) = 7
. If the plane P passes through the point (2, 3, 1/2),
then the value of 13a2d2\frac{| 13a→|² }{d²} is equal to

A

90

B

93

C

95

D

97

Answer

93

Explanation

Solution

The correct answer is (B) : 93
P 1: x + 3 yz = 6
P 2: –6 x + 5 yz = 7
Family of planes passing through line of intersection of P 1 and P 2 is given by x(1 – 6λ) + y(3 + 5λ) + z (–1 – λ) – (6 + 7λ) = 0
It passes through (2, 3, 1/2)
So,
2(16λ)+3(3+5λ)+12(1λ)(6+7λ)=02 ( 1 - 6λ ) + 3(3 + 5λ) + \frac{1}{2} (-1 - λ) - ( 6 + 7λ ) = 0
212λ+9+15λ12λ267λ=0⇒ 2 - 12λ + 9 + 15λ - \frac{1}{2} - \frac{λ}{2} - 6 - 7λ = 0
929λ2=0λ=1⇒ \frac{9}{2} - \frac{9λ}{2} = 0 ⇒ λ = 1
Required plane is
–5 x + 8 y – 2 z – 13 = 0
Or
r.(5i^+8j^2k^)=13\stackrel{→}{r} . ( -5\hat{i} + 8\hat{j} - 2\hat{k} ) = 13
13a2d2=132(13)2.a2=93\frac{| 13a→ |²}{ |d|²} = \frac{13²}{(13)²} . |\stackrel{→}{a}|^2 = 93