Solveeit Logo

Question

Mathematics Question on distance between two points

Let the plane P pass through the intersection of the planes 2x+3yz=22 x+3 y-z=2 and x+2y+3z=6x+2 y+3 z=6, and be perpendicular to the plane 2x+yz+1=02 x+y-z+1=0 If dd is the distance of PP from the point (7,1,1)(-7,1,1), then d2d^2 is equal to :

A

2583\frac{25}{83}

B

25083\frac{250}{83}

C

1553\frac{15}{53}

D

25082\frac{250}{82}

Answer

25083\frac{250}{83}

Explanation

Solution

P≡P1​+λP2​=0
(2+λ)x+(3+2λ)y+(3λ−1)z−2−6λ=0
Plane P is perpendicular to P3​
∴n⋅n3​=0
2(λ+2)+(2λ+3)−(3λ−1)=0
λ=−8
P≡−6x−13y−25z+46=0
6x+13y+25z−46=0
Dist from (−7,1,1)
d=∣∣​36+169+625​−42+13+25−46​∣∣​=830​50​
d2=83050×50​=83250​