Solveeit Logo

Question

Question: Let the parabola $y=x^2+px-3$, meet the coordinate axes at the points $P, Q$ and $R$. If the circle ...

Let the parabola y=x2+px3y=x^2+px-3, meet the coordinate axes at the points P,QP, Q and RR. If the circle CC with centre at (1,1)(-1, -1) passes through the points P,QP, Q and RR, then the area of PQR\triangle PQR is:

A

4

B

6

C

5

D

7

Answer

6

Explanation

Solution

The parabola is given by

y=x2+px3.y=x^2+px-3.

It meets the y-axis when x=0x=0, so one point is

P=(0,3).P=(0,-3).

The x-intercepts are found by setting y=0y=0:

x2+px3=0.x^2+px-3=0.

Let the roots be x1x_1 and x2x_2. Then the x-axis intersection points are

Q=(x1,0)andR=(x2,0).Q=(x_1,0) \quad \text{and} \quad R=(x_2,0).

A circle CC with center (1,1)(-1,-1) passes through all three points. Its radius using point PP is:

r=(0+1)2+(3+1)2=1+4=5.r=\sqrt{(0+1)^2+(-3+1)^2} = \sqrt{1+4}=\sqrt{5}.

Hence, for a point (x,y)(x, y) on the circle,

(x+1)2+(y+1)2=5.(x+1)^2+(y+1)^2=5.

For the x-intercepts Q=(x1,0)Q=(x_1,0) and R=(x2,0)R=(x_2,0):

(x1+1)2+(0+1)2=5(x1+1)2+1=5,(x_1+1)^2+(0+1)^2 = 5 \quad \Rightarrow \quad (x_1+1)^2+1=5, (x1+1)2=4x1+1=±2.(x_1+1)^2=4 \quad \Rightarrow \quad x_1+1=\pm2.

Thus, x1=1x_1=1 or x1=3x_1=-3. Hence, the roots of the quadratic are 11 and 3-3.

Using Vieta’s formulas for x2+px3=0x^2+px-3=0:

  • Sum of roots: 1+(3)=2=pp=21+(-3)=-2=-p \Rightarrow p=2.
  • Product of roots: 1×(3)=31\times(-3)=-3 (consistent with the constant term).

The vertices of PQR\triangle PQR are:

P=(0,3),Q=(1,0),R=(3,0).P=(0,-3),\quad Q=(1,0),\quad R=(-3,0).

Calculate the area using the base and height method. The base along the x-axis from (3,0)(-3,0) to (1,0)(1,0) has length:

(1(3))=4.(1 - (-3))=4.

The height from point (0,3)(0,-3) to the x-axis is 33.

Thus, the area AA is:

A=12×base×height=12×4×3=6.A = \frac{1}{2}\times\text{base}\times\text{height} = \frac{1}{2}\times 4\times 3 = 6.