Solveeit Logo

Question

Question: Let the number 2, b, c be in A.P. and \(A\ =v\ \left[ \begin{matrix} 1 & 1 & 1 \\\ 2 & b &...

Let the number 2, b, c be in A.P. and A =v [111 2bc 4b2c2 ]A\ =v\ \left[ \begin{matrix} 1 & 1 & 1 \\\ 2 & b & c \\\ 4 & {{b}^{2}} & {{c}^{2}} \\\ \end{matrix} \right]. If det(A)[2,16]\det \left( A \right)\in \left[ 2,16 \right], then c lies in the interval:
A) [2,3)[2,3)
B) (2+234,4)\left( 2+{{2}^{\dfrac{3}{4}}},4 \right)
C) [3,2+234]\left[ 3,2+{{2}^{\dfrac{3}{4}}} \right]
D) [4,6]\left[ 4,6 \right]

Explanation

Solution

Hint: Use the fact that 2, b, c is in A.P. the substitute b = 2+c2b\ =\ \dfrac{2+c}{2} and hence find the determinant. After finding the determinant use the fact it belongs to [2,16]\left[ 2,16 \right] and hence, find [4,6]\left[ 4,6 \right].
Complete step-by-step answer:
In the question it is given that 2, b, c is in A.P. and a matrix A is given which is  [111 2bc 4b2c2 ]\ \left[ \begin{matrix} 1 & 1 & 1 \\\ 2 & b & c \\\ 4 & {{b}^{2}} & {{c}^{2}} \\\ \end{matrix} \right]. Further it is said that if the range of det(A)[2,16]\det \left( A \right)\in \left[ 2,16 \right], then we have to find the interval of c.
As 2, b, c is in A.P. so we can say that,
b = 2+c2b\ =\ \dfrac{2+c}{2}.
Now, we will substitute the b in term of c in matrix A so we get,
A = [111 22+c2c 4(2+c2)2c2 ]A\ =\ \left[ \begin{matrix} 1 & 1 & 1 \\\ 2 & \dfrac{2+c}{2} & c \\\ 4 & {{\left( \dfrac{2+c}{2} \right)}^{2}} & {{c}^{2}} \\\ \end{matrix} \right]
Now, we will take det(A) so,
det(A) = 1((2+c2)c2c(2+c2)2)1(2c24c)+1(2(2+c2)24(2+c2))\det \left( A \right)\ =\ 1\left( \left( \dfrac{2+c}{2} \right){{c}^{2}}-c{{\left( \dfrac{2+c}{2} \right)}^{2}} \right)-1\left( 2{{c}^{2}}-4c \right)+1\left( 2{\left( \dfrac{2+c}{2} \right)^2}-4\left( \dfrac{2+c}{2} \right) \right)
On further expanding we get,
det(A) = 2c2+c32c4(4+4c+c2)2c2+4c+(4+4c+c2)242c\det \left( A \right)\ =\ \dfrac{2{{c}^{2}}+{{c}^{3}}}{2}-\dfrac{c}{4}\left( 4+4c+{{c}^{2}} \right)-2{{c}^{2}}+4c+\dfrac{\left( 4+4c+{{c}^{2}} \right)}{2}-4-2c
= 4c2+2c34c4c2c38c2+16c+8+8c+2c24+168c4=\ \dfrac{4{{c}^{2}}+2{{c}^{3}}-4c-4{{c}^{2}}-{{c}^{3}}-8{{c}^{2}}+16c+8+8c+2{{c}^{2}}}{4}+\dfrac{-16-8c}{4}
On simplification we get,
det(A) = c36c2+12c84\det \left( A \right)\ =\ \dfrac{{{c}^{3}}-6{{c}^{2}}+12c-8}{4}
Now at first we will factorize the given numerator which is c36c2+12c8{{c}^{3}}-6{{c}^{2}}+12c-8 as (c)3+3×(2)×(c)2+3×(2)2×c+(2)3{{\left( c \right)}^{3}}+3\times \left( -2 \right)\times {{\left( c \right)}^{2}}+3\times {{\left( -2 \right)}^{2}}\times c+{{\left( -2 \right)}^{3}} . Now we know that the formula of a3+3a2b+3ab2+b3{{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}} is (a+b)3{{\left( a+b \right)}^{3}} . So, we can factorize and write it as (c2)3{{\left( c-2 \right)}^{3}} .
Now, we can write (c36c2+12c8)\left( {{c}^{3}}-6{{c}^{2}}+12c-8 \right) as (c2)3{{\left( c-2 \right)}^{3}}
det(A) = (c2)3\det \left( A \right)\ =\ {{\left( c-2 \right)}^{3}}
Now, as we know det(A) lie between 2 and 16 so,
2(c2)34162\le \dfrac{{{\left( c-2 \right)}^{3}}}{4}\le 16
On multiplying by 4 all the sides we get,
8(c2)3648\le {{\left( c-2 \right)}^{3}}\le 64
Taking cube root in all the sides we get
2(c2)42\le \left( c-2 \right)\le 4
So, $$$$
2+2c2+24+22+2\le c-2+2\le 4+2
Hence, 4c64\le c\le 6
The correct option is ‘D’.
Note: Students should be cautious while finding out the determinant because there is a high chance of making calculation mistakes. Also, while doing inequality they should know that taking cube root doesn't change signs but square root can.