Solveeit Logo

Question

Mathematics Question on Circle

Let the mirror image of a circle c1 :x2 + y2 – 2x – 6y + α = 0 in line y = x + 1 be c2 : 5x2 + 5y2 + 10gx + 10fy + 38 = 0. If r is the radius of circle c2, then α + 6r2 is equal to _________.

Answer

The correct answer is 12
c1: x2 + y2 – 2x – 6y + α = 0
Then centre = (1, 3) and
radius (r)=10α(r)=\sqrt{10−α}
Image of (1, 3) w.r.t. line x – y + 1 = 0 is (2, 2)
c2: 5x2 + 5y2 + 10gx + 10fy + 38 = 0
or
x2+y2+2gx+2fy+385=0x^2+y^2+2gx+2fy+\frac{38}{5}=0
Then (–g, –f) = (2, 2)
∴ g = f = – 2 …(i)
Radius of c2=r=4+4385=10αc_2=r=\sqrt{4+4−\frac{38}{5}}=\sqrt{10−α}
25=10α⇒ \frac{2}{5}=10−α
α=485∴ α=\frac{48}{5} and r=25r=\sqrt{\frac{2}{5}}
α+6r2=485+125∴ α+6r^2=\frac{48}{5}+\frac{12}{5}
= 12