Solveeit Logo

Question

Mathematics Question on Statistics

Let the mean and the variance of 20 observations x1,x2,.,x20x_1, x_2,…., x_{20} be 15 and 9, respectively. For a ∈ R, if the mean of (x1+α)2,(x2+α)2,.,(x20+α)2(x_1 + α)^2, (x_2 + α)^2,….,(x_{20} + α)^2 is 178, then the square of the maximum value of αα is equal to ___________.

Answer

Given, i=12020xi=15 i=120xi=300(1)\begin{array}{l} \displaystyle\sum\limits_{\frac{i=1}{20}}^{20}x_i=15\Rightarrow\ \displaystyle\sum\limits_{i=1}^{20}x_i=300\cdots\left(1\right)\end{array}
and i=12020xi2(x)2=9i=120xi2=4680(2)\begin{array}{l} \displaystyle\sum\limits_{\frac{i=1}{20}}^{20}x_i^2-\left(\overline{x}\right)^2=9\Rightarrow \displaystyle\sum\limits_{i=1}^{20}x_i^2=4680\cdots\left(2\right)\end{array}
Mean=(x1+α)2+(x2+α)2++(x20+α)220\begin{array}{l} \text{Mean}=\frac{\left(x_1+\alpha\right)^2+\left(x_2+\alpha\right)^2+\cdots+\left(x_{20}+\alpha\right)^2}{20} \end{array}= 178
 i=120xi2+2αi=120xi+20α220=178\begin{array}{l} \Rightarrow\ \frac{\displaystyle\sum\limits_{i=1}^{20}x_i^2+2\alpha\displaystyle\sum\limits_{i=1}^{20}x_i+20\alpha^2}{20}=178\end{array}
⇒ 4680 + 600αα + 20α2α^2 = 3560
α2α^2 + 30αα + 56 = 0
α2α^2 + 28αα + 2αα + 56 = 0
⇒ (αα + 28)(αα + 2) = 0
αmaxα_{max} = – 2
αmax2=4\begin{array}{l}\Rightarrow \alpha_{\text{max}}^2=4\end{array}