Question
Mathematics Question on Statistics
Let the mean and the variance of 20 observations x1,x2,….,x20 be 15 and 9, respectively. For a ∈ R, if the mean of (x1+α)2,(x2+α)2,….,(x20+α)2 is 178, then the square of the maximum value of α is equal to ___________.
Answer
Given, 20i=1∑20xi=15⇒ i=1∑20xi=300⋯(1)
and 20i=1∑20xi2−(x)2=9⇒i=1∑20xi2=4680⋯(2)
Mean=20(x1+α)2+(x2+α)2+⋯+(x20+α)2= 178
⇒ 20i=1∑20xi2+2αi=1∑20xi+20α2=178
⇒ 4680 + 600α + 20α2 = 3560
⇒ α2+ 30α + 56 = 0
⇒ α2+ 28α + 2α + 56 = 0
⇒ (α + 28)(α + 2) = 0
αmax= – 2
⇒αmax2=4