Solveeit Logo

Question

Mathematics Question on Random Variables and its Probability Distributions

Let the mean and the standard deviation of the probability distribution be deviationbe μ\mu and σ\sigma, respectively. If σμ=2\sigma - \mu = 2, then σ+μ\sigma + \mu is equal to ________.

Answer

Given that the total probability sums to 1:

13+K+16+14=1.\frac{1}{3} + K + \frac{1}{6} + \frac{1}{4} = 1.

Simplifying:

K=14.K = \frac{1}{4}.

Step 1: Calculate the Mean μ\mu The mean μ\mu is given by:

μ=α13+1K+016+(3)14.\mu = \alpha \cdot \frac{1}{3} + 1 \cdot K + 0 \cdot \frac{1}{6} + (-3) \cdot \frac{1}{4}.

Substituting the values:

μ=α3+141+034=α312.\mu = \frac{\alpha}{3} + \frac{1}{4} \cdot 1 + 0 - \frac{3}{4} = \frac{\alpha}{3} - \frac{1}{2}.

Step 2: Calculate the Variance σ2\sigma^2 The variance σ2\sigma^2 is given by:

σ2=(α213+12K+0216+(3)214)μ2.\sigma^2 = \left(\alpha^2 \cdot \frac{1}{3} + 1^2 \cdot K + 0^2 \cdot \frac{1}{6} + (-3)^2 \cdot \frac{1}{4} \right) - \mu^2.

Substituting the values:

σ2=α23+14+94(α312)2.\sigma^2 = \frac{\alpha^2}{3} + \frac{1}{4} + \frac{9}{4} - \left(\frac{\alpha}{3} - \frac{1}{2}\right)^2.

Simplifying:

σ2=α23+14+94(α29α+14).\sigma^2 = \frac{\alpha^2}{3} + \frac{1}{4} + \frac{9}{4} - \left(\frac{\alpha^2}{9} - \alpha + \frac{1}{4}\right).

Further simplification gives:

σ2=2α29+α+94.\sigma^2 = \frac{2\alpha^2}{9} + \alpha + \frac{9}{4}.

Step 3: Given Condition σμ=2\sigma - \mu = 2 Given:

σ=μ+2.\sigma = \mu + 2.

Substituting this condition and solving for α\alpha:

σ2=(μ+2)2.\sigma^2 = (\mu + 2)^2.

Equating and simplifying:

α=6(since α=0 is rejected).\alpha = 6 \quad \text{(since $\alpha = 0$ is rejected)}.

Step 4: Calculate σ+μ\sigma + \mu Substitute α=6\alpha = 6 into the expressions for μ\mu and σ\sigma:

σ+μ=2μ+2=5.\sigma + \mu = 2\mu + 2 = 5.

Therefore, the correct answer is 55.

Explanation

Solution

Given that the total probability sums to 1:

13+K+16+14=1.\frac{1}{3} + K + \frac{1}{6} + \frac{1}{4} = 1.

Simplifying:

K=14.K = \frac{1}{4}.

Step 1: Calculate the Mean μ\mu The mean μ\mu is given by:

μ=α13+1K+016+(3)14.\mu = \alpha \cdot \frac{1}{3} + 1 \cdot K + 0 \cdot \frac{1}{6} + (-3) \cdot \frac{1}{4}.

Substituting the values:

μ=α3+141+034=α312.\mu = \frac{\alpha}{3} + \frac{1}{4} \cdot 1 + 0 - \frac{3}{4} = \frac{\alpha}{3} - \frac{1}{2}.

Step 2: Calculate the Variance σ2\sigma^2 The variance σ2\sigma^2 is given by:

σ2=(α213+12K+0216+(3)214)μ2.\sigma^2 = \left(\alpha^2 \cdot \frac{1}{3} + 1^2 \cdot K + 0^2 \cdot \frac{1}{6} + (-3)^2 \cdot \frac{1}{4} \right) - \mu^2.

Substituting the values:

σ2=α23+14+94(α312)2.\sigma^2 = \frac{\alpha^2}{3} + \frac{1}{4} + \frac{9}{4} - \left(\frac{\alpha}{3} - \frac{1}{2}\right)^2.

Simplifying:

σ2=α23+14+94(α29α+14).\sigma^2 = \frac{\alpha^2}{3} + \frac{1}{4} + \frac{9}{4} - \left(\frac{\alpha^2}{9} - \alpha + \frac{1}{4}\right).

Further simplification gives:

σ2=2α29+α+94.\sigma^2 = \frac{2\alpha^2}{9} + \alpha + \frac{9}{4}.

Step 3: Given Condition σμ=2\sigma - \mu = 2 Given:

σ=μ+2.\sigma = \mu + 2.

Substituting this condition and solving for α\alpha:

σ2=(μ+2)2.\sigma^2 = (\mu + 2)^2.

Equating and simplifying:

α=6(since α=0 is rejected).\alpha = 6 \quad \text{(since $\alpha = 0$ is rejected)}.

Step 4: Calculate σ+μ\sigma + \mu Substitute α=6\alpha = 6 into the expressions for μ\mu and σ\sigma:

σ+μ=2μ+2=5.\sigma + \mu = 2\mu + 2 = 5.

Therefore, the correct answer is 55.