Solveeit Logo

Question

Mathematics Question on Mean Deviation

Let the mean and standard deviation of marks of class A of 100100 students be respectively 4040 and α\alpha (> 0 ), and the mean and standard deviation of marks of class B of nn students be respectively 5555 and 30 α-\alpha. If the mean and variance of the marks of the combined class of 100+n100+ n students are respectively 5050 and 350350 , then the sum of variances of classes AA and BB is :

A

500

B

450

C

650

D

900

Answer

500

Explanation

Solution

ABA+B
x1=40\overline{x_1}=40x2=55\overline{x_2}=55x=50\overline{x}=50
σ2=α\sigma_2=\alphaσ2=30α\sigma_2=30-\alphaσ2=350\sigma^2=350
n1=100n_1=100n2=nn_2=n100+n100+n

x=100×40+55n100+n\overline{x}=\frac{100\times40+55n}{100+n}
5000 + 50n = 4000 + 55n
1000 = 5n
n = 200

σ12​=100∑xi2​​−402
σ22​=100∑xj2​​−552
350=σ2=300∑xi2​+∑xj2​​−(x)2
350=300(1600+α2)×100+[(30−α)2+3025]×200​−(50)2
2850×3=α2+2(30−α)2+1600+6050
8550=α2+2(30−α)2+7650
α2+2(30−α)2=900
α2−40α+300=0
α=10,30
σ12​+σ22​=102+202=500
So, the correct option is (A) : 500