Solveeit Logo

Question

Mathematics Question on Surface Areas and Volumes

Let the maximum area of the triangle that can be inscribed in the ellipse x2a2+y24=1,a>2\frac{x^2}{a^2}+\frac{y^2}{4} = 1, a>2, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the yy-axis, be 636\sqrt3. Then the eccentricity of the ellipse is

A

32\frac{\sqrt3}{2}

B

12\frac{1}{2}

C

12\frac{1}{\sqrt2}

D

34\frac{\sqrt3}{4}

Answer

32\frac{\sqrt3}{2}

Explanation

Solution

x2a2+y24=1,a>2\frac{x^2}{a^2}+\frac{y^2}{4} = 1, a>2

Assuming A(θ)A(θ) be the area of ΔABBΔABB′

A(θ)=124sinθ(a+acosθ)A(\theta) = \frac{1}{2} 4 sin \theta (a+ a cos\theta) and A(θ)=a(2cosθ+2cos2θ)A' (\theta) = a(2cos\theta+2cos2\theta)

cosθ=1,cosθ=12⇒ cos\theta = -1, cos\theta = \frac{1}{2}

cosθ=12cos\theta = \frac{1}{2}

232(a+a2)=63⇒ 2 \frac{\sqrt3}{2} \bigg(a+\frac{a}{2}\bigg) = 6√3

a=4⇒ a = 4

e=1b2a2∴ e = \sqrt{ 1- \frac{b^2}{a^2}}

=1416=\sqrt{1-\frac{4}{16}}

=32= \frac{\sqrt3}{2}

Hence, the correct option is (A): 32\frac{\sqrt3}{2}