Solveeit Logo

Question

Mathematics Question on Maxima and Minima

Let the maximum and minimum values of (8xx2124)2+(x7)2,xR be M and m respectively.\left( \sqrt{8x - x^2 - 12 - 4} \right)^2 + (x - 7)^2, \quad x \in \mathbb{R} \text{ be } M \text{ and } m \text{ respectively}. Then M2m2M^2 - m^2 is equal to _____.

Answer

Given the function:

f(x)=(8xx216)2+(x7)2.f(x) = \left( \sqrt{8x - x^2 - 16} \right)^2 + (x - 7)^2.

Simplifying:

f(x)=8xx216+(x7)2.f(x) = 8x - x^2 - 16 + (x - 7)^2.

Expanding (x7)2(x - 7)^2:

f(x)=8xx216+x214x+49.f(x) = 8x - x^2 - 16 + x^2 - 14x + 49.

Combining like terms:

f(x)=6x+33.f(x) = -6x + 33.

Step 1: Finding Maximum and Minimum Values

To find the maximum and minimum values of f(x)f(x), we differentiate with respect to xx:

f(x)=6.f'(x) = -6.

Since the derivative is constant and negative, f(x)f(x) is a linear function that decreases as xx increases. Therefore, the maximum value occurs at the lower bound of the domain of xx, and the minimum value occurs at the upper bound.

Step 2: Calculating the Domain of xx

For the square root to be real, we require:

8xx2160    x28x+160.8x - x^2 - 16 \geq 0 \quad \implies \quad x^2 - 8x + 16 \leq 0.

Solving the quadratic inequality:

(x4)20    x=4.(x - 4)^2 \leq 0 \quad \implies \quad x = 4.

Step 3: Evaluating f(x)f(x) at x=4x = 4

Substitute x=4x = 4 into f(x)f(x):

f(4)=844216+(47)2=321616+9=9.f(4) = 8 \cdot 4 - 4^2 - 16 + (4 - 7)^2 = 32 - 16 - 16 + 9 = 9.

Thus, the minimum value m=9m = 9.

Step 4: Calculating M2m2M^2 - m^2

Given that M=49M = 49:

M2m2=49292=1600.M^2 - m^2 = 49^2 - 9^2 = 1600.

Therefore, the correct answer is 1600.