Solveeit Logo

Question

Mathematics Question on Matrices

Let the matrix A=[010 001 100]A=\begin{bmatrix}0 & 1 & 0 \\\ 0 & 0 & 1 \\\ 1 & 0 & 0\end{bmatrix} and the matrix B0=A49+2A98B_0=A^{49}+2 A^{98} If Bn=Adj(Bn1)B_n=\text{Adj}\left(B_{n-1}\right) for all n1n \geq 1, then det(B4)\text{det}\left( B _4\right) is equal to :

A

3283^{28}

B

3303^{30}

C

3323^{32}

D

3363^{36}

Answer

3323^{32}

Explanation

Solution

The correct answer is (C) : 3323^{32}
A2=[010 100 001 ][010 100 001 ]=[100 010 001 ]=IA^2=\begin{bmatrix} 0 & 1 & 0 \\\ 1 & 0 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix}\begin{bmatrix} 0 & 1 & 0 \\\ 1 & 0 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{bmatrix}=I
B0=(A2)49+2(A2)24AB0=2A+IB_0=(A^2)^{49}+2(A^2)^{24}A⇒B_0=2A+I
B0=[120 210 003 ]B0=9B_0=\begin{bmatrix} 1 & 2 & 0 \\\ 2 & 1 & 0 \\\ 0 & 0 & 3 \\\ \end{bmatrix}⇒|B_0|=-9
B4=adj B3=adj(adj B2)=adj(adj(adj B1)=adj(adj/adj(adj B0)B_4=adj\ B_3=adj(adj\ B_2)=adj(adj(adj\ B_1)=adj(adj/adj(adj\ B_0)
B4=B0(31)4|B_4|=|B_0|^{(3-1)^4}
=B016=(9)16=|B_0|^{16}=(-9)^{16}
=(9)16=332=(-9)^{16}=3^{32}