Question
Mathematics Question on Conic sections
Let the lines
y+2x=11+77 and 2y+x=211+67
be normal to a circle C:(x–h)2\+(y–k)2=r2. If the line
11y−3x=3517+11
is tangent to the circle C , then the value of (5h–8k)2\+5r2 is equal to _______.
Answer
Line 1 : y+2x=11+77
Line 2 : 2y+x=211+67
Point of intersection of these two lines is centre of circle i.e.
(38√7,√11+35√7)
Perpendicular from centre to line 3x−11y+(3577+11)=0
is radius of circle
⇒r=∣2087−11−3577+3577+11∣
=∣457∣=457 units
So (5h–8K)2\+5r2
=(340√7−811−3407)2+5.16.57
=64×11+112
=816
So, the answer is 816.