Solveeit Logo

Question

Mathematics Question on Conic sections

Let the lines
y+2x=11+77y + 2x = \sqrt {11} + 7\sqrt 7 and 2y+x=211+672y + x = 2\sqrt {11} + 6\sqrt 7
be normal to a circle C:(xh)2\+(yk)2=r2C : (x – h)^2 \+ (y – k)^2 = r^2. If the line
11y3x=5173+11\sqrt {11}y - 3x =\frac { 5\sqrt {17}}{3} + 11
is tangent to the circle C , then the value of (5h8k)2\+5r2(5h – 8k)^2 \+ 5r^2 is equal to _______.

Answer

Line 1 : y+2x=11+77y + 2x = \sqrt {11} + 7\sqrt 7
Line 2 : 2y+x=211+672y + x = 2\sqrt {11} + 6\sqrt 7
Point of intersection of these two lines is centre of circle i.e.
(837,11+537)( \frac 83√7, √11 + \frac 53√7 )
Perpendicular from centre to line 3x11y+(5773+11)=03x − \sqrt {11}y + (\frac {5\sqrt {77}}{3} + 11 ) = 0
is radius of circle
r=87115377+5773+1120⇒ r =|\frac { 8\sqrt 7 − 11 − \frac 53\sqrt {77} + \frac {5\sqrt {77}}{3} + 11}{\sqrt {20}}|

=754=754= | \sqrt[4]{\frac 75} | = \sqrt[4]{\frac 75} units
So (5h8K)2\+5r2(5h – 8K)^2 \+ 5r^2
=(40378114037)2+5.16.75=(\frac {40}{3}√7 − 8\sqrt {11} − \frac {40}{3}\sqrt 7 )^2 + 5.16 .\frac 75
=64×11+112= 64 × 11 + 112
=816= 816

So, the answer is 816816.