Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let the linesx1λ=y21=z32 and x+262=y+183=z+28λ \begin{array}{l} \frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}\ \text{and}\ \frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}\end{array}be coplanar and P be the plane containing these two lines. Then which of the following points does NOT lie on P?

A

(0,-2,-2)

B

(-5,0,-1)

C

(3,-1,0)

D

(0,4,5)

Answer

(0,4,5)

Explanation

Solution

Given,L1:x1λ=y21=z32,\begin{array}{l} L_1:\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2},\end{array}through a pointa1(1,2,3)\begin{array}{l} \overrightarrow{a}_1\equiv \left(1, 2, 3\right)\end{array}parallel to b1(λ,1,2)\begin{array}{l} \overrightarrow{b}_1\equiv \left(\lambda, 1, 2\right)\end{array}

and L2:x+262=y+183=z+28λ\begin{array}{l} L_2:\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda} \end{array}through a pointa2=(26,18,28)\begin{array}{l} \overrightarrow{a}_2=\left(-26,-18,-28\right)\end{array}parallel tob2=(2,3,1)\begin{array}{l} \overrightarrow{b}_2=\left(-2,3,1\right) \end{array}

If lines are coplanar then, (a2a1)b1×b2=0\begin{array}{l} \left(\overrightarrow{a}_2-\overrightarrow{a}_1\right)\cdot\overrightarrow{b}_1\times\overrightarrow{b}_2=0\end{array}

 272031λ1223λ=0λ=3\begin{array}{l} \Rightarrow\ \begin{vmatrix}27 & 20 & 31 \\\\\lambda & 1 & 2 \\\\-2 & 3 & \lambda \\\\\end{vmatrix}=0\Rightarrow \lambda =3\end{array}

Vector normal to the required plane n=b1×b2\begin{array}{l} \overrightarrow{n}=\overrightarrow{b}_1\times \overrightarrow{b}_2\end{array}

 n=i^j^k^\312233=3i^13j^+11k^\begin{array}{l} \Rightarrow\ \overrightarrow{n}=\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\\3 & 1 & 2 \\\\-2 & 3 & 3 \\\\\end{vmatrix}=-3\hat{i}-13\hat{j}+11\hat{k}\end{array}

Equation of plane((x1),(y2),(z3))(3,13,11)=0\begin{array}{l} \equiv\left(\left(x-1\right),\left(y-2\right),\left(z-3\right)\right)\cdot\left(-3,-13,11\right)=0\end{array}

3x+13y11z+4=0\begin{array}{l} \Rightarrow 3x+13y-11z+4=0 \end{array}

From given option (0, 4, 5) does not lie on the plane.