Solveeit Logo

Question

Question: Let the line lx + my = 1 cut the parabola y2 = 4ax in the points A and B. Normals at A and B meet at...

Let the line lx + my = 1 cut the parabola y2 = 4ax in the points A and B. Normals at A and B meet at point C. Normal from C other than these two meet the parabola at D then the coordinate of D are

A

(a, 2a)

B

(4aml2,4al)\left( \frac{4am}{\mathcal{l}^{2}},\frac{4a}{\mathcal{l}} \right)

C

(2am2l2,2al)\left( \frac{2am^{2}}{\mathcal{l}^{2}},\frac{2a}{\mathcal{l}} \right)

D

(4am2l2,4aml)\left( \frac{4am^{2}}{\mathcal{l}^{2}},\frac{4am}{\mathcal{l}} \right)

Answer

(4am2l2,4aml)\left( \frac{4am^{2}}{\mathcal{l}^{2}},\frac{4am}{\mathcal{l}} \right)

Explanation

Solution

Three points A, B and D are co-normal.

y2 – 4a (1myl)\left( \frac{1 - my}{\mathcal{l}} \right) = 0

y1 + y = 4aml\frac{- 4am}{\mathcal{l}}

̃ y1 + y2 + y3 = 0

̃ y1 =4aml\frac{4am}{\mathcal{l}}