Solveeit Logo

Question

Question: Let the line \(lx+my=1\) cut the parabola \({{y}^{2}}=4ax\) in the points A and B. Normals at A and ...

Let the line lx+my=1lx+my=1 cut the parabola y2=4ax{{y}^{2}}=4ax in the points A and B. Normals at A and B meets the point C. Normal from C other than these two meet the parabola at D then the coordinate of D are –
a.(a,2a)\left( a,2a \right)
b.(4aml2,4al)\left( \dfrac{4am}{{{l}^{2}}},\dfrac{4a}{l} \right)
c.(2am2l2,2al)\left( \dfrac{2a{{m}^{2}}}{{{l}^{2}}},\dfrac{2a}{l} \right)
d.(4am2l2,4aml)\left( \dfrac{4a{{m}^{2}}}{{{l}^{2}}},\dfrac{4am}{l} \right)

Explanation

Solution

Hint: From the equation lx+my=1lx+my=1 get equation for y and put the value of y in y2=4ax{{y}^{2}}=4ax . Simplify and solve the quadratic expression formed. The 3 normals that can be drawn from a point is given by an equation. Simplify the value of y we got according. Thus, find the coordinate of D.

Complete step-by-step answer:
We have been given the equation of the line as lx+my=1lx+my=1 .
We have been given the equation of parabola as y2=4ax{{y}^{2}}=4ax .
From the given equation of line, we can write,
lx+my=1my=1lxlx+my=1\Rightarrow my=1-lx
y=1lxm\therefore y=\dfrac{1-lx}{m}…………………….. (1)
Now, put this in value of y in y2=4ax{{y}^{2}}=4ax.
(1lxm)2=4ax(1lx)2m2=4ax{{\left( \dfrac{1-lx}{m} \right)}^{2}}=4ax\Rightarrow \dfrac{{{\left( 1-lx \right)}^{2}}}{{{m}^{2}}}=4ax .
We know (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2{ab}
12lx+l2x2=4am2 l2x22lx4m2xa+1=0 x2l2(2l+4m2a)x+1=0 \begin{aligned} & \therefore 1-2lx+{{l}^{2}}{{x}^{2}}=4a{{m}^{2}} \\\ & {{l}^{2}}{{x}^{2}}-2lx-4{{m}^{2}}xa+1=0 \\\ & \Rightarrow {{x}^{2}}{{l}^{2}}-\left( 2l+4{{m}^{2}}a \right)x+1=0 \\\ \end{aligned}
Now the above equation is of the form ax2+bx+c=0a{{x}^{2}}+bx+c=0 . Now by comparing both equation, we get –
a=l2,b=(2l+4m2a),c=1a={{l}^{2}},b=-\left( 2l+4{{m}^{2}}a \right),c=1 .
Put these values in the quadratic formula x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} .
x=(2l+4m2a)±(2l+4m2a)24×l2×12l2 =(2l+4m2a)±4l2+16lm2a+16m4a24l22l2 =(2l+4m2a)±16m2a2(l+m2)2l2 =(2l+4m2a)±4mal+m22l2 \begin{aligned} & x=\dfrac{\left( 2l+4{{m}^{2}}a \right)\pm \sqrt{{{\left( 2l+4{{m}^{2}}a \right)}^{2}}-4\times {{l}^{2}}\times 1}}{2{{l}^{2}}} \\\ & =\dfrac{\left( 2l+4{{m}^{2}}a \right)\pm \sqrt{4{{l}^{2}}+16l{{m}^{2}}a+16{{m}^{4}}{{a}^{2}}-4{{l}^{2}}}}{2{{l}^{2}}} \\\ & =\dfrac{\left( 2l+4{{m}^{2}}a \right)\pm \sqrt{16{{m}^{2}}{{a}^{2}}\left( l+{{m}^{2}} \right)}}{2{{l}^{2}}} \\\ & =\dfrac{\left( 2l+4{{m}^{2}}a \right)\pm 4ma\sqrt{l+{{m}^{2}}}}{2{{l}^{2}}} \\\ \end{aligned} (a+b)2=a2+2ab+b2\therefore {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
Thus we got x=2l+4m2a±4mal+m22l2=l+2m2a±2mal+m2l2x=\dfrac{2l+4{{m}^{2}}a\pm 4ma\sqrt{l+{{m}^{2}}}}{2{{l}^{2}}}=\dfrac{l+2{{m}^{2}}a\pm 2ma\sqrt{l+{{m}^{2}}}}{{{l}^{2}}}
Hence, we get the value of x in the equation of y.
y=1lxm=1m[1l(l+2m2a±2mal+m2l2)] y=1m[2m2a±2mal+m2l]=mm[2ma±2al+m2l] \begin{aligned} & y=\dfrac{1-lx}{m}=\dfrac{1}{m}\left[ 1-l\left( \dfrac{l+2{{m}^{2}}a\pm 2ma\sqrt{l+{{m}^{2}}}}{{{l}^{2}}} \right) \right] \\\ & y=\dfrac{1}{m}\left[ \dfrac{2{{m}^{2}}a\pm 2ma\sqrt{l+{{m}^{2}}}}{l} \right]=\dfrac{m}{m}\left[ \dfrac{2ma\pm 2a\sqrt{l+{{m}^{2}}}}{l} \right] \\\ \end{aligned}
y=2ma±2al+m2l\therefore y=\dfrac{2ma\pm 2a\sqrt{l+{{m}^{2}}}}{l}……………………… (2)
The 3rd coordinate given to us is D. Let us take the coordinates of D as (x3,y3)\left( {{x}_{3}},{{y}_{3}} \right) . Through point C. 3 normals pass.
The equation of normal for the general equation of parabola y2=4ax{{y}^{2}}=4ax is given as,
yy1=y12a(xx1)y-{{y}_{1}}=\dfrac{-{{y}_{1}}}{2a}\left( x-{{x}_{1}} \right) .
Now let us find the equation of normal for point P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right). Thus, put x=at12x=at_{1}^{2} and y1=2at1{{y}_{1}}=2a{{t}_{1}} in the above equation.
y2at1=2at12a(xat12)y-2a{{t}_{1}}=\dfrac{-2a{{t}_{1}}}{2a}\left( x-at_{1}^{2} \right)
Now cancel out the like terms and simplify the above expression,
y2at1=t1(xat12) y2at1=xt1+at13 y=t1x+at13 \begin{aligned} & y-2a{{t}_{1}}=-{{t}_{1}}\left( x-at_{1}^{2} \right) \\\ & y-2a{{t}_{1}}=-x{{t}_{1}}+at_{1}^{3} \\\ & \Rightarrow y=-{{t}_{1}}x+at_{1}^{3} \\\ \end{aligned}
Thus from a point 3 normals can be given by the equation. y=tx2atat3y=tx-2at-a{{t}^{3}} .
The sum of all values of t1{{t}_{1}} and t=0.
We know the coordinates of y as 2at12a{{t}_{1}} .
Thus & y=0, Now put & y=0 in equation (2). Thus we can write y1+y2+y3=0{{y}_{1}}+{{y}_{2}}+{{y}_{3}}=0 .
y1=2ma+2al+m2l y2=2ma2al+m2l 2ma+2al+m2l+2ma2al+m2l+y3=0 \begin{aligned} & {{y}_{1}}=\dfrac{2ma+2a\sqrt{l+{{m}^{2}}}}{l} \\\ & {{y}_{2}}=\dfrac{2ma-2a\sqrt{l+{{m}^{2}}}}{l} \\\ & \therefore \dfrac{2ma+2a\sqrt{l+{{m}^{2}}}}{l}+\dfrac{2ma-2a\sqrt{l+{{m}^{2}}}}{l}+{{y}_{3}}=0 \\\ \end{aligned}
2ma+2al+m2+2ma2al+m2l+y3=0 4mal=y3 \begin{aligned} & \dfrac{2ma+2a\sqrt{l+{{m}^{2}}}+2ma-2a\sqrt{l+{{m}^{2}}}}{l}+{{y}_{3}}=0 \\\ & \dfrac{4ma}{l}={{y}_{3}} \\\ \end{aligned}
Hence we got the value of y3=4mal{{y}_{3}}=\dfrac{4ma}{l}.
Thus from the options we can say that value of x3=4am2l2{{x}_{3}}=\dfrac{4a{{m}^{2}}}{{{l}^{2}}} .
\therefore The coordinates of D=(4am2l2,4aml)\left( \dfrac{4a{{m}^{2}}}{{{l}^{2}}},\dfrac{4am}{l} \right).
Therefore, option (d) is the correct answer.

Note: For a given parabola and for a given point let say (b,c)\left( b,c \right) , the cubic m has 3 roots say m1,m2,m3{{m}_{1}},{{m}_{2}},{{m}_{3}} . The 3 normals that can be drawn to the parabola have slope m1,m2,m3{{m}_{1}},{{m}_{2}},{{m}_{3}} . For this cubic, we have m1,m2,m3=0{{m}_{1}},{{m}_{2}},{{m}_{3}}=0 .