Question
Mathematics Question on Three Dimensional Geometry
Let the line L:2x−1=−1y+1=1z−3 intersect the plane 2x+y+3z=16 at the point P Let the point Q be the foot of perpendicular from the point R(1,−1,−3) on the line L If α is the area of triangle PQR, then α2 is equal to
Answer
The correct answer is 180.
Any point on L((2λ+1),(−λ−1),(λ+3))
2(2λ+1)+(−λ−1)+3(λ+3)=16
6λ+10=16⇒λ=1
∴P=(3,−2,4)
DR of QR=⟨2λ,−λ,λ+6⟩
DR of L=⟨2,−1,1⟩
4λ+λ+λ+6=0
6λ+6=0⇒λ=−1
Q=(−1,0,2)
QR×QP=∣∣i^24j^−1−2k^−52∣∣=−12i^−24j^
α=21×144+576⇒α2=4720=180