Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let the line L:x12=y+11=z31L: \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{1} intersect the plane 2x+y+3z=162 x+y+3 z=16 at the point PP Let the point QQ be the foot of perpendicular from the point R(1,1,3)R(1,-1,-3) on the line LL If α\alpha is the area of triangle PQRP Q R, then α2\alpha^2 is equal to

Answer

The correct answer is 180.
Any point on L((2λ+1),(−λ−1),(λ+3))
2(2λ+1)+(−λ−1)+3(λ+3)=16
6λ+10=16⇒λ=1
∴P=(3,−2,4)
DR of QR=⟨2λ,−λ,λ+6⟩
DR of L=⟨2,−1,1⟩
4λ+λ+λ+6=0
6λ+6=0⇒λ=−1
Q=(−1,0,2)

QR​×QP​=∣∣​i^24​j^​−1−2​k^−52​∣∣​=−12i^−24j^​
α=21​×144+576​⇒α2=4720​=180