Solveeit Logo

Question

Question: Let the limits are given as \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin...

Let the limits are given as limx0sec1(xsinx)=l\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=l and limx0sec1(xtanx)=m\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=m, then
(a) l exists but m does not
(b) m exists but l does not
(c) l and m both exist
(d) neither l nor m exists

Explanation

Solution

Hint: Use basic rules of limit and inverse functions to evaluate the limit of given functions.

Complete step-by-step answer:
We have the functions sec1(xsinx){{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right) and sec1(xtanx){{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right). We have to evaluate the limit for both functions around the point x=0x=0.
We will begin by evaluating the limits for the function xsinx\dfrac{x}{\sin x} and xtanx\dfrac{x}{\tan x}.
We observe that limx0xsinx\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x} is of the form 00\dfrac{0}{0}.
An indeterminate form is an expression involving two functions whose limit can’t be determined solely from the limits of the individual functions. We will use L’Hopital Rule to evaluate the limit of such forms which states that if limxaf(x)g(x)=00\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0} then we have limxaf(x)g(x)=limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}.
Substituting f(x)=x,g(x)=sinxf\left( x \right)=x,g\left( x \right)=\sin x in the above formula and evaluating the limit around x=0x=0, we get limxaf(x)g(x)=limxaf(x)g(x)limx0xsinx=limx0d(x)dxd(sinx)dx.....(1)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \sin x \right)}{dx}}.....\left( 1 \right).
We know that differentiation of any function of the form y=axny=a{{x}^{n}} is such that dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=1a=1,n=1 in the above formula, we get d(x)dx=1.....(2)\dfrac{d\left( x \right)}{dx}=1.....\left( 2 \right).
We know that differentiation of any function of the form y=sinxy=\sin x is such that d(sinx)dx=cosx.....(3)\dfrac{d\left( \sin x \right)}{dx}=\cos x.....\left( 3 \right).
Substituting equation (2)\left( 2 \right) and (3)\left( 3 \right) in equation (1)\left( 1 \right), we get limx0xsinx=limx0d(x)dxd(sinx)dx=limx01cosx=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \sin x \right)}{dx}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos x}=1.
Thus, we have limx0sec1(xsinx)=limx0sec1(1)=0\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( 1 \right)=0.
Hence, we have l=0l=0.
We will now evaluate the limit for xtanx\dfrac{x}{\tan x}.
We observe that limx0xtanx\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x} is of the form 00\dfrac{0}{0}.
Hence, we will use L’Hopital Rule to evaluate the limit which states that if limxaf(x)g(x)=00\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0} then we have limxaf(x)g(x)=limxaf(x)g(x)=f(a)g(a)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}.
Substituting f(x)=x,g(x)=tanxf\left( x \right)=x,g\left( x \right)=\tan x in the above formula and evaluating the limit around x=0x=0, we get limxaf(x)g(x)=limxaf(x)g(x)limx0xsinx=limx0d(x)dxd(tanx)dx.....(4)\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \tan x \right)}{dx}}.....\left( 4 \right).
We know that differentiation of any function of the form y=axny=a{{x}^{n}} is such that dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=1a=1,n=1 in the above formula, we get d(x)dx=1.....(5)\dfrac{d\left( x \right)}{dx}=1.....\left( 5 \right).
We know that differentiation of any function of the form y=tanxy=\tan x is such that d(tanx)dx=sec2x.....(6)\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x.....\left( 6 \right).
Substituting equation (5)\left( 5 \right) and (6)\left( 6 \right) in equation (4)\left( 4 \right), we get limx0xtanx=limx0d(x)dxd(tanx)dx=limx01sec2x=1\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \tan x \right)}{dx}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{\sec }^{2}}x}=1.
Thus, we have limx0sec1(xtanx)=limx0sec1(1)=0\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( 1 \right)=0.
Hence, we have m=0m=0.
We observe that both the limits exist and are equal to 0, i.e., l=m=0l=m=0, which is option (c).
Note: It’s necessary to evaluate the limit of the basic functions involved instead of directly evaluating the exact limit of the function. Indeterminate forms of the functions include 00,,0×,,00,1,0\dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty ,{{0}^{0}},{{1}^{\infty }},{{\infty }^{0}}.