Solveeit Logo

Question

Mathematics Question on Conic sections

Let the latus rectum of the hyperbola x29y2b2=1\frac{x^2}{9} - \frac{y^2}{b^2} = 1 subtend an angle of π3\frac{\pi}{3} at the center of the hyperbola. If b2b^2 is equal to 1m(1+n)\frac{1}{m} \left( 1 + \sqrt{n} \right), where ll and mm are coprime numbers, then l2+m2+n2l^2 + m^2 + n^2 is equal to \\_\\_\\_\\_\\_\\_\\_\\_\\_.

Answer

Given the hyperbola x29y2b2=1\frac{x^2}{9} - \frac{y^2}{b^2} = 1 with latus rectum subtending 6060^\circ at the center, we have: tan30=b2/aae=b2a2e=13\tan 30^\circ = \frac{b^2 / a}{ae} = \frac{b^2}{a^2 e} = \frac{1}{\sqrt{3}}
This gives e=53e = \frac{\sqrt{5}}{3}. Using e2=1+b2a2e^2 = 1 + \frac{b^2}{a^2}:
b2=3b4+27b43b227=0b^2 = 3b^4 + 27 \Rightarrow b^4 - 3b^2 - 27 = 0
Solving, we get b2=13(1+13)b^2 = \frac{1}{3}(1 + \sqrt{13}) with l=2l = 2, m=3m = 3, and n=13n = 13.
Thus, l2+m2+n2=4+9+169=182l^2 + m^2 + n^2 = 4 + 9 + 169 = 182