Question
Mathematics Question on Conic sections
Let the latus rectum of the hyperbola 9x2−b2y2=1 subtend an angle of 3π at the center of the hyperbola. If b2 is equal to m1(1+n), where l and m are coprime numbers, then l2+m2+n2 is equal to \\_\\_\\_\\_\\_\\_\\_\\_\\_.
Answer
Given the hyperbola 9x2−b2y2=1 with latus rectum subtending 60∘ at the center, we have: tan30∘=aeb2/a=a2eb2=31
This gives e=35. Using e2=1+a2b2:
b2=3b4+27⇒b4−3b2−27=0
Solving, we get b2=31(1+13) with l=2, m=3, and n=13.
Thus, l2+m2+n2=4+9+169=182