Solveeit Logo

Question

Statistics for Economics Question on Probability theory

Let the joint probability density function of the random variables 𝑋 and π‘Œ be
f(x,y)={1,0<x<1,    x<y<x+1Β 0,Β Β Otherwisef(x,y) = \begin{cases} 1, & \quad 0<x<1,\,\,\,\,x<y<x+1\\\ 0,& \quad \ \text{ Otherwise} \end{cases}
Let the marginal density of 𝑋 and π‘Œ be 𝑓𝑋(π‘₯) and π‘“π‘Œ (𝑦), respectively. Which of the following is/are CORRECT?

A

fx(x)={2x,   0<x<1Β 0,    Otherwisef_x(x) = \begin{cases} 2x,\,\,\,0<x<1 & \quad \\\ 0, \,\,\,\,\text{Otherwise}\end{cases} And fy(y)={2βˆ’y,   0<y<2Β 0,    Otherwisef_y(y) = \begin{cases} 2-y,\,\,\,0<y<2 & \quad \\\ 0, \,\,\,\,\text{Otherwise}\end{cases}

B

fx(x)={1,   0<x<1Β 0,    Otherwisef_x(x) = \begin{cases} 1,\,\,\,0<x<1 & \quad \\\ 0, \,\,\,\,\text{Otherwise}\end{cases} And fy(y)={y,            0<y<1Β 2βˆ’y,  1≀y<2\0,              Otherwisef_y(y) = \begin{cases} y,\,\,\,\,\,\,\,\,\,\,\,\,0<y<1 & \quad \\\ 2-y, \,\,1≀y<2\\\0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Otherwise}\end{cases}

C

E(X)=12E(X)=\frac{1}{2}, var(X)=112\frac{1}{12}

D

E(Y)=1E(Y)=1, var(Y)= 16\frac{1}{6}

Answer

fx(x)={1,   0<x<1Β 0,    Otherwisef_x(x) = \begin{cases} 1,\,\,\,0<x<1 & \quad \\\ 0, \,\,\,\,\text{Otherwise}\end{cases} And fy(y)={y,            0<y<1Β 2βˆ’y,  1≀y<2\0,              Otherwisef_y(y) = \begin{cases} y,\,\,\,\,\,\,\,\,\,\,\,\,0<y<1 & \quad \\\ 2-y, \,\,1≀y<2\\\0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Otherwise}\end{cases}

Explanation

Solution

The correct options is (B): fx(x)={1,   0<x<1Β 0,    Otherwisef_x(x) = \begin{cases} 1,\,\,\,0<x<1 & \quad \\\ 0, \,\,\,\,\text{Otherwise}\end{cases} And fy(y)={y,            0<y<1Β 2βˆ’y,  1≀y<2\0,              Otherwisef_y(y) = \begin{cases} y,\,\,\,\,\,\,\,\,\,\,\,\,0<y<1 & \quad \\\ 2-y, \,\,1≀y<2\\\0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Otherwise}\end{cases}, (C): E(X)=12E(X)=\frac{1}{2}, var(X)=112\frac{1}{12} and (D): E(Y)=1E(Y)=1, var(Y)= 16\frac{1}{6}