Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Let the inverse trigonometric functions take principal values. The number of real solutions of the equation 2sin1x+3cos1x=2π5,2 \sin^{-1} x + 3 \cos^{-1} x = \frac{2\pi}{5}, is ______ .

Answer

We are given the equation:

2sin1x+3cos1x=2π52 \sin^{-1} x + 3 \cos^{-1} x = \frac{2\pi}{5}

Let sin1x=α\sin^{-1} x = \alpha and cos1x=β\cos^{-1} x = \beta. We know the identity:

sin1x+cos1x=π2\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}

So, we have:

2α+3β=2π52\alpha + 3\beta = \frac{2\pi}{5}

Using β=π2α\beta = \frac{\pi}{2} - \alpha, substitute this into the equation:

2α+3(π2α)=2π52\alpha + 3\left(\frac{\pi}{2} - \alpha\right) = \frac{2\pi}{5}

Simplifying:

2α+3π23α=2π52\alpha + \frac{3\pi}{2} - 3\alpha = \frac{2\pi}{5}

α+3π2=2π5-\alpha + \frac{3\pi}{2} = \frac{2\pi}{5}

α=2π53π2-\alpha = \frac{2\pi}{5} - \frac{3\pi}{2}

α=4π1015π10=11π10-\alpha = \frac{4\pi}{10} - \frac{15\pi}{10} = -\frac{11\pi}{10}

α=11π10\alpha = \frac{11\pi}{10}

Now, since α=sin1x\alpha = \sin^{-1} x and sin1x\sin^{-1} x must lie in the range [π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], we find that α=11π10\alpha = \frac{11\pi}{10} is not possible because it is outside the allowed range of the inverse sine function.

Thus, the equation has no real solutions.

Final Answer:

0