Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let the image of the point P(1, 2, 3) in the line
L:x63=y12=z23L:\frac{x−6}{3}=\frac{y−1}{2}=\frac{z−2}{3}
be Q. Let R (α, β, γ) be a point that divides internally the line segment PQ in the ratio 1 : 3. Then the value of 22(α + β + γ) is equal to ________.

Answer

The correct answer is 125
The point dividing PQ in the ratio 1 : 3 will be mid-point of P & foot of perpendicular from P on the line.
∴ Let a point on line be λ
x63=y12=z23=λ⇒\frac{x−6}{3}=\frac{y−1}{2}=\frac{z−2}{3}=λ
P(3λ+6,2λ+1,3λ+2)⇒P^′(3λ+6,2λ+1,3λ+2)
as P′ is foot of perpendicular
(3λ + 5)3 + (2λ – 1)2 + (3λ – 1)3 = 0
⇒ 22λ + 15 – 2 – 3 = 0
⇒λ=−5/11
P(5111,111,711)∴P^′(\frac{51}{11},\frac{1}{11},\frac{7}{11})
Mid-point of PP’
(5111+12,111+22,711+32)(6222,2322,4022)(α,β,γ)≡(\frac{\frac{51}{11}+1}{2},\frac{\frac{1}{11}+2}{2},\frac{\frac{7}{11}+3}{2})≡(\frac{62}{22},\frac{23}{22},\frac{40}{22})≡(α,β,γ)
⇒ 22(α + β + γ)
= 62 + 23 + 40 = 125