Solveeit Logo

Question

Mathematics Question on Hyperbola

Let the hyperbola H:x2a2y2b2=1H: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 pass through (22,222\sqrt2,-2\sqrt2 ). A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?

A

23,322\sqrt3,3\sqrt2

B

33,623\sqrt3,-6\sqrt2

C

3,6\sqrt3,-\sqrt6

D

36,623\sqrt6,6\sqrt2

Answer

33,623\sqrt3,-6\sqrt2

Explanation

Solution

H:x2a2y2b2=1\begin{array}{l} H:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \end{array}

Focus of parabola: (ae , 0)

Directrix: x = – ae.

Equation of parabola ≡ y 2 = 4 aex

Length of latus rectum of parabola = 4 ae

Length of latus rectum of hyperbola=2b2a\begin{array}{l}\text{Length of latus rectum of hyperbola} =\frac{2\cdot b^2}{a} \end{array}

as given,

4ae=2b2ae\begin{array}{l} 4ae=\frac{2b^2}{a}\cdot e\end{array}

2=b2a2(i)\begin{array}{l} 2=\frac{b^2}{a^2}\cdots \left(i\right)\end{array}

H passes through(22,22)8a28b2=1(ii)\begin{array}{l} \because \text{H passes through} \left(2\sqrt{2},-2\sqrt{2}\right)\Rightarrow \frac{8}{a^2}-\frac{8}{b^2}=1\cdots \left(ii\right)\end{array}

From (i) and (ii) a 2 = 4 and b 2 = 8

e=3\begin{array}{l}\Rightarrow e=\sqrt{3}\end{array}

Equation of parabola is y2=83x\begin{array}{l} \Rightarrow\text{Equation of parabola is}~ y^2=8\sqrt{3}x\end{array}