Solveeit Logo

Question

Question: Let the function $f(x) = \sin[x]$, where $[\cdot]$ is the greatest integer function and $g(x) = |x|$...

Let the function f(x)=sin[x]f(x) = \sin[x], where [][\cdot] is the greatest integer function and g(x)=xg(x) = |x|.

What is limx0{f(x)g(x)}\lim_{x\to 0} \{f(x)g(x)\} equal to?

A

-1

B

0

C

1

D

Limit does not exist

Answer

0

Explanation

Solution

Solution Overview:

We are given:

f(x)=sin([x])andg(x)=xf(x) = \sin([x]) \quad \text{and} \quad g(x)=|x|

where [x][x] is the floor (greatest integer) function.

  1. For x0+x \to 0^+:

    • 0x<10 \leq x < 1 implies [x]=0[x] = 0.
    • Hence, f(x)=sin(0)=0f(x)=\sin(0)=0, and so f(x)g(x)=0x=0 f(x)g(x)=0\cdot |x|=0.
  2. For x0x \to 0^-:

    • 1<x<0-1<x<0 implies [x]=1[x] = -1.
    • Hence, f(x)=sin(1)f(x)=\sin(-1) (a constant value),
    • But g(x)=x0g(x)=|x| \to 0.
    • So, f(x)g(x)=sin(1)x0 f(x)g(x)=\sin(-1)|x| \to 0.

Since both one-sided limits equal 0, the overall limit is 0.