Solveeit Logo

Question

Question: Let the function $f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \ne 0$ be strictly increasing in $(-\infty...

Let the function f(x)=x3+3x+3,x0f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \ne 0 be strictly increasing in (,α1)(α2,)(-\infty, \alpha_1) \cup (\alpha_2, \infty) and strictly decreasing in (α3,α4)(α4,α5)(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5). Then i=15αi2\sum_{i=1}^5 \alpha_i^2 is equal to :-

Answer

36

Explanation

Solution

The derivative of f(x)f(x) is f(x)=133x2f'(x) = \frac{1}{3} - \frac{3}{x^2}. Setting f(x)=0f'(x) = 0 gives x2=9x^2 = 9, so x=±3x = \pm 3. The function is undefined at x=0x=0. Analyzing the sign of f(x)f'(x) shows that f(x)f(x) is strictly increasing on (,3)(3,)(-\infty, -3) \cup (3, \infty) and strictly decreasing on (3,0)(0,3)(-3, 0) \cup (0, 3). Comparing with the given intervals, we have α1=3\alpha_1 = -3, α2=3\alpha_2 = 3, α3=3\alpha_3 = -3, α4=0\alpha_4 = 0, and α5=3\alpha_5 = 3. Therefore, i=15αi2=(3)2+(3)2+(3)2+(0)2+(3)2=9+9+9+0+9=36\sum_{i=1}^5 \alpha_i^2 = (-3)^2 + (3)^2 + (-3)^2 + (0)^2 + (3)^2 = 9 + 9 + 9 + 0 + 9 = 36.