Solveeit Logo

Question

Mathematics Question on Definite Integral

Let the function f:RRf: R \rightarrow R and g:RRg: R \rightarrow R be defined by
f(x)=ex1ex1f(x)=e^{x-1}-e^{-|x-1|} and g(x)=12(ex1+e1x)g(x)=\frac{1}{2}\left(e^{x-1}+e^{1-x}\right).
Then the area of the region in the first quadrant bounded by the curves y=f(x),y=g(x)y=f(x), y=g(x) and x=0x=0 is

A

(23)+12(ee1)(2-\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)

B

(2+3)+12(ee1)(2+\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)

C

(23)+12(e+e1)(2-\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)

D

(2+3)+12(e+e1)(2+\sqrt{3})+\frac{1}{2}\left(e+e^{-1}\right)

Answer

(23)+12(ee1)(2-\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)

Explanation

Solution

The Correct Option is (A): (23)+12(ee1)(2-\sqrt{3})+\frac{1}{2}\left(e-e^{-1}\right)