Question
Question: Let the function \({{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right...
Let the function fk(x)=k1(sinkx+coskx) for k=1,2,3,.... Then for all x∈R, the value of f4(x)−f6(x) is equal to:
(A) 125
(B) 12−1
(C) 41
(D) 121
Solution
We solve this question by first considering f4(x) and simplify it using the formulas a2+b2=(a+b)2−2ab and sin2x+cos2x=1. Then we consider the function f6(x) and find its value by simplifying the value using the formulas (a3+b3)=(a+b)(a2+b2−ab) and sin2x+cos2x=1. Then we use these values and find the value of f4(x)−f6(x).
Complete step-by-step solution:
We are given that the function, fk(x)=k1(sinkx+coskx).
We need to find the value of f4(x)−f6(x).
Now let us consider the f4(x). So,
⇒f4(x)=41(sin4x+cos4x)⇒f4(x)=41((sin2x)2+(cos2x)2)
Now let us consider the formula
⇒a2+b2+2ab=(a+b)2⇒a2+b2=(a+b)2−2ab
Using this formula, we can write sin4x+cos4x as,
sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x
Now let us use the formula
sin2x+cos2x=1
Using that we can write,
sin4x+cos4x=(1)2−2sin2xcos2xsin4x+cos4x=1−2sin2xcos2x..........(1)
Using equation (1) we can write f4(x) as,
⇒f4(x)=41(sin4x+cos4x)⇒f4(x)=41(1−2sin2xcos2x)⇒f4(x)=41−21sin2xcos2x...........(2)
Now let us consider the f6(x). So,
⇒f6(x)=61(sin6x+cos6x)⇒f6(x)=61((sin2x)3+(cos2x)3)
Now let us consider the formula,
(a3+b3)=(a+b)(a2+b2−ab)
Using this formula, we can write the above equation as
⇒f6(x)=61(sin2x+cos2x)(sin4x+cos4x−sin2xcos2x)
Now let us consider the formula,
sin2x+cos2x=1
Using this formula, we can write the above equation as
⇒f6(x)=61(1)(sin4x+cos4x−sin2xcos2x)⇒f6(x)=61(sin4x+cos4x−sin2xcos2x)
Now let use the value in equation (1) and we write it as,
⇒f6(x)=61(1−2sin2xcos2x−sin2xcos2x)⇒f6(x)=61(1−3sin2xcos2x)⇒f6(x)=61−21sin2xcos2x............(3)
Now using equations (2) and (3) we can find the value of f4(x)−f6(x) as,
⇒f4(x)−f6(x)=41−21sin2xcos2x−(61−21sin2xcos2x)⇒f4(x)−f6(x)=(41−61)−21sin2xcos2x+21sin2xcos2x⇒f4(x)−f6(x)=121
So, we get the value of f4(x)−f6(x) as 121.
Hence answer is Option D.
Note: We can also solve this question in another process.
First let us consider the f6(x). So,
⇒f6(x)=61(sin6x+cos6x)⇒f6(x)=61((sin2x)3+(cos2x)3)
Now let us consider the formula,
(a3+b3)=(a+b)(a2+b2−ab)
Using this formula, we can write the above equation as
⇒f6(x)=61(sin2x+cos2x)(sin4x+cos4x−sin2xcos2x)
Now let us consider the formula,
sin2x+cos2x=1
Using this formula, we can write the above equation as
⇒f6(x)=61(1)(sin4x+cos4x−sin2xcos2x)⇒6f6(x)=sin4x+cos4x−sin2xcos2x...........(1)
As we have
⇒f4(x)=41(sin4x+cos4x)⇒4f4(x)=sin4x+cos4x
Substituting this value in equation (1), we get,