Solveeit Logo

Question

Question: Let the function \({{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right...

Let the function fk(x)=1k(sinkx+coskx){{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right) for k=1,2,3,....k=1,2,3,.... Then for all xRx\in R, the value of f4(x)f6(x){{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right) is equal to:
(A) 512\dfrac{5}{12}
(B) 112\dfrac{-1}{12}
(C) 14\dfrac{1}{4}
(D) 112\dfrac{1}{12}

Explanation

Solution

We solve this question by first considering f4(x){{f}_{4}}\left( x \right) and simplify it using the formulas a2+b2=(a+b)22ab{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab and sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. Then we consider the function f6(x){{f}_{6}}\left( x \right) and find its value by simplifying the value using the formulas (a3+b3)=(a+b)(a2+b2ab)\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) and sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. Then we use these values and find the value of f4(x)f6(x){{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right).

Complete step-by-step solution:
We are given that the function, fk(x)=1k(sinkx+coskx){{f}_{k}}\left( x \right)=\dfrac{1}{k}\left( {{\sin }^{k}}x+{{\cos }^{k}}x \right).
We need to find the value of f4(x)f6(x){{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right).
Now let us consider the f4(x){{f}_{4}}\left( x \right). So,
f4(x)=14(sin4x+cos4x) f4(x)=14((sin2x)2+(cos2x)2) \begin{aligned} & \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\\ & \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\left( {{\sin }^{2}}x \right)}^{2}}+{{\left( {{\cos }^{2}}x \right)}^{2}} \right) \\\ \end{aligned}
Now let us consider the formula
a2+b2+2ab=(a+b)2 a2+b2=(a+b)22ab \begin{aligned} & \Rightarrow {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}} \\\ & \Rightarrow {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab \\\ \end{aligned}
Using this formula, we can write sin4x+cos4x{{\sin }^{4}}x+{{\cos }^{4}}x as,
sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x{{\sin }^{4}}x+{{\cos }^{4}}x={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x
Now let us use the formula
sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Using that we can write,
sin4x+cos4x=(1)22sin2xcos2x sin4x+cos4x=12sin2xcos2x..........(1) \begin{aligned} & {{\sin }^{4}}x+{{\cos }^{4}}x={{\left( 1 \right)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x \\\ & {{\sin }^{4}}x+{{\cos }^{4}}x=1-2{{\sin }^{2}}x{{\cos }^{2}}x..........\left( 1 \right) \\\ \end{aligned}
Using equation (1) we can write f4(x){{f}_{4}}\left( x \right) as,
f4(x)=14(sin4x+cos4x) f4(x)=14(12sin2xcos2x) f4(x)=1412sin2xcos2x...........(2) \begin{aligned} & \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\\ & \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( 1-2{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ & \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x...........\left( 2 \right) \\\ \end{aligned}
Now let us consider the f6(x){{f}_{6}}\left( x \right). So,
f6(x)=16(sin6x+cos6x) f6(x)=16((sin2x)3+(cos2x)3) \begin{aligned} & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{6}}x+{{\cos }^{6}}x \right) \\\ & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}} \right) \\\ \end{aligned}
Now let us consider the formula,
(a3+b3)=(a+b)(a2+b2ab)\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)
Using this formula, we can write the above equation as
f6(x)=16(sin2x+cos2x)(sin4x+cos4xsin2xcos2x)\Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)
Now let us consider the formula,
sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Using this formula, we can write the above equation as
f6(x)=16(1)(sin4x+cos4xsin2xcos2x) f6(x)=16(sin4x+cos4xsin2xcos2x) \begin{aligned} & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1 \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ \end{aligned}
Now let use the value in equation (1) and we write it as,
f6(x)=16(12sin2xcos2xsin2xcos2x) f6(x)=16(13sin2xcos2x) f6(x)=1612sin2xcos2x............(3) \begin{aligned} & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1-2{{\sin }^{2}}x{{\cos }^{2}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1-3{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x............\left( 3 \right) \\\ \end{aligned}
Now using equations (2) and (3) we can find the value of f4(x)f6(x){{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right) as,
f4(x)f6(x)=1412sin2xcos2x(1612sin2xcos2x) f4(x)f6(x)=(1416)12sin2xcos2x+12sin2xcos2x f4(x)f6(x)=112 \begin{aligned} & \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{4}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x-\left( \dfrac{1}{6}-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ & \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\left( \dfrac{1}{4}-\dfrac{1}{6} \right)-\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x+\dfrac{1}{2}{{\sin }^{2}}x{{\cos }^{2}}x \\\ & \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12} \\\ \end{aligned}
So, we get the value of f4(x)f6(x){{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right) as 112\dfrac{1}{12}.
Hence answer is Option D.

Note: We can also solve this question in another process.
First let us consider the f6(x){{f}_{6}}\left( x \right). So,
f6(x)=16(sin6x+cos6x) f6(x)=16((sin2x)3+(cos2x)3) \begin{aligned} & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{6}}x+{{\cos }^{6}}x \right) \\\ & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}} \right) \\\ \end{aligned}
Now let us consider the formula,
(a3+b3)=(a+b)(a2+b2ab)\left( {{a}^{3}}+{{b}^{3}} \right)=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right)
Using this formula, we can write the above equation as
f6(x)=16(sin2x+cos2x)(sin4x+cos4xsin2xcos2x)\Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right)
Now let us consider the formula,
sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Using this formula, we can write the above equation as
f6(x)=16(1)(sin4x+cos4xsin2xcos2x) 6f6(x)=sin4x+cos4xsin2xcos2x...........(1) \begin{aligned} & \Rightarrow {{f}_{6}}\left( x \right)=\dfrac{1}{6}\left( 1 \right)\left( {{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ & \Rightarrow 6{{f}_{6}}\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x-{{\sin }^{2}}x{{\cos }^{2}}x...........\left( 1 \right) \\\ \end{aligned}
As we have
f4(x)=14(sin4x+cos4x) 4f4(x)=sin4x+cos4x \begin{aligned} & \Rightarrow {{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right) \\\ & \Rightarrow 4{{f}_{4}}\left( x \right)={{\sin }^{4}}x+{{\cos }^{4}}x \\\ \end{aligned}
Substituting this value in equation (1), we get,

& \Rightarrow 6{{f}_{6}}\left( x \right)=4{{f}_{4}}\left( x \right)-{{\sin }^{2}}x{{\cos }^{2}}x \\\ & \Rightarrow 4{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)={{\sin }^{2}}x{{\cos }^{2}}x \\\ \end{aligned}$$ Let us add $2{{f}_{4}}\left( x \right)$ on both sides. Then we get, $$\Rightarrow 6{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)=2{{f}_{4}}\left( x \right)+{{\sin }^{2}}x{{\cos }^{2}}x.......\left( 2 \right)$$ As we know, ${{f}_{4}}\left( x \right)=\dfrac{1}{4}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)$ we get, $\Rightarrow 2{{f}_{4}}\left( x \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)$ Substituting this value in the above equation (2) we get $$\begin{aligned} & \Rightarrow 6{{f}_{4}}\left( x \right)-6{{f}_{6}}\left( x \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x \right)+{{\sin }^{2}}x{{\cos }^{2}}x \\\ & \Rightarrow 6\left( {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right) \right)=\dfrac{1}{2}\left( {{\sin }^{4}}x+{{\cos }^{4}}x+2{{\sin }^{2}}x{{\cos }^{2}}x \right) \\\ & \Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12}{{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}} \\\ \end{aligned}$$ Using the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we can write the above equation as $$\Rightarrow {{f}_{4}}\left( x \right)-{{f}_{6}}\left( x \right)=\dfrac{1}{12}{{\left( 1 \right)}^{2}}=\dfrac{1}{12}$$ Hence answer is Option D.