Question
Question: Let the function f be defined by the equation \(f(x) = \left\{ \begin{matrix} 3x,\text{if}0 \leq x ...
Let the function f be defined by the equation
f(x)={3x,if0≤x≤15−3x,if1<x≤2, then
A
limx→1f(x)=f(1)
B
limx→1f(x)=3
C
limx→1f(x)=2
D
limx→1f(x) does not exist
Answer
limx→1f(x) does not exist
Explanation
Solution
L.H.L.=limx→1−0f(x)=limh→0f(1−h)=limh→03(1−h)
=limh→0(3−3h)=3−3.0=3
R.H.L.=limx→1+0f(x)=limh→0f(1+h)=limh→0[5−3(1+h)]=limh→0(2−3h)=2−3.0=2
Hence limx→1f(x) does not exists.