Solveeit Logo

Question

Mathematics Question on Integral Calculus

Let the function f:[1,)Rf:[1,\infin)→\R be defined by
f(t)={(1)n+12,if t=2n1,nN, (2n+1t)2f(2n1)+(t(2n1))2f(2n+1)if 2n1<t<2n+1,nN.f(t) = \begin{cases} (-1)^{n+1}2, & \text{if } t=2n-1,n\in\N, \\\ \frac{(2n+1-t)}{2}f(2n-1)+\frac{(t-(2n-1))}{2}f(2n+1) & \text{if } 2n-1<t<2n+1,n\in\N. \end{cases}
Define g(x)=1xf(t)dt,x(1,).g(x)=\int\limits_{1}^{x}f(t)dt,x\in(1,\infin). Let α denote the number of solutions of the equation g(x) = 0 in the interval (1, 8] and β=limx1+g(x)x1β=\lim\limits_{x→1+}\frac{g(x)}{x-1}. Then the value of α + β is equal to _____.

Answer

The correct answer is: 5.